
задает по крайней мере один цикл порядка три (думаю, что и более),

-- не выражается в радиклах. Мое первое впечатление, что полиномы

и

имеют малое количество множителей, и циклы задаваемые их корнями совпадают со степенью полинома. Это, быть может, и глупое весьма предположение. Почти наугад.
По поводу определения смысла, рискну высказать вторую догадку.

. На сколько я помню, все "плохие" точки убегают от нуля по экспоненте. Это определение действительно задает фрактал, но корни?!? Может, кто-нибудь знакомый с Maple прокоментирует? Кроме того, можно рассматривать

. Но свойства такого множества для меня туманны. Навскидку -- оно может заполнять всюду плотно некоторую область с фрактальной границей. А может и не заполнять.