2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 9  След.
 
 Теория поля
Сообщение03.07.2014, 18:05 
Аватара пользователя
при получении уравнений Максвелла из лагранжиана электромагнитного поля, когда мы варьируем потенциалы поля, а распределение токов и зарядов считаем заданным, то они должны удовлетворять уравнению непрерывности(те закону сохранения электрического заряда) или нет?

-- 03.07.2014, 19:06 --

а если мы имеем лагранжеву плотность поля, то бишь лагранжиан, для него есть что то типо уравнений Эйлера-Лагранжа, чтоб каждый раз не варьировать?

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 18:49 
1)Я не понял вопрос.
2)Есть конечно. Выведите сами, варьируя $$\[S = \frac{1}{c}\int\limits_\Omega  {\Lambda ({f_k},{\partial _\nu }{f_k})d\Omega } \]$$

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 18:52 
Аватара пользователя
Ms-dos4 в сообщении #883619 писал(а):
Есть конечно. Выведите сами, варьируя

а в википедии в конце формула правильная где лагранжев формализм?-[url]http://ru.wikipedia.org/wiki/Лагранжева_механика[/url]

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 18:54 
Да. Ничего вы сами делать не хотите :-)

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 18:55 
Аватара пользователя
а почему у меня ссылку не воспринимает?

-- 03.07.2014, 19:56 --

а по первому вопросу, когда мы варьируем потенциалы поля, мы же считаем распределение зарядов и токов заданым, да?

-- 03.07.2014, 19:56 --

те произвольно заданым?

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:07 
1)Ссылки видимо нужны без русского текста, т.е.

(Оффтоп)

Код:
[url]http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B3%D1%80%D0%B0%D0%BD%D0%B6%D0%B5%D0%B2%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0[/url]
или так
[url=http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B3%D1%80%D0%B0%D0%BD%D0%B6%D0%B5%D0%B2%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0]Лагранжева механика[/url]


2)Вы считаете заданным движения зарядов

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:09 
Аватара пользователя
Да, при варьировании потенциала поле 4-токов считается произвольно заданным и не обязательно удовлетворяющим уравнению непрерывности. Нам о существовании этого уравнения ещё ничего неизвестно. Оно появится лишь как следствие уравнения $\frac{\partial F^{ik}}{\partial x^k}=-4\pi j^i$, полученного варьированием потенциала.

Можно и так ответить: в данной процедуре не возникает никаких величин вроде дивергенции тока, которую можно было бы заменить нулем на основании непрерывности. Вопрос о непрерывности просто не возникает.

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:11 
Аватара пользователя
Ms-dos4 в сообщении #883627 писал(а):
)Ссылки видимо нужны без русского текста, т.е

а как сделать без русского текста? :roll:
Ms-dos4 в сообщении #883627 писал(а):
Вы считаете заданным движения зарядов

и распределение зарядов?-ведь оно тоже входит в лагранжиан

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:19 
Sicker
1)Дык под оффтоп гляньте, я код туда спрятал
2)Это одно и то же. Если вы знаете, как двигаются все заряды, знаете и распределение. Вам svv уже подробно ответил.

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:29 
Аватара пользователя

(По поводу ссылочек)

Читая любую статью в Вики, мы видим в колонке слева раздел Инструменты > Цитировать страницу. Надо войти в «Цитировать страницу» и скопировать постоянную ссылку, в данном случае http://ru.wikipedia.org/?oldid=62706194. Теперь надо состряпать такое:
Код:
[url=http://ru.wikipedia.org/?oldid=62706194]Лагранжева механика[/url]
Это даёт
Лагранжева механика
Плохо только, что ссылка именно постоянная, а не на последнюю версию страницы. Эту проблему я ещё не решил.

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:34 
Аватара пользователя
Ms-dos4 в сообщении #883633 писал(а):
1)Дык под оффтоп гляньте, я код туда спрятал

да мне нужно узнать, как вы это получили :mrgreen:
svv, спасибо!
Ms-dos4 в сообщении #883633 писал(а):
Это одно и то же. Если вы знаете, как двигаются все заряды, знаете и распределение. Вам svv уже подробно ответил.

нет, мы знаем распределение только если нам известно уравнение непрерывности

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:37 
Sicker
Да неужели. Вот я вам говорю, 1-ый заряд находится там-то и движется так то и т.д. Всё известно, $\[\rho  = \sum\limits_{k = 1}^n {{e_k}\delta (\vec r - {{\vec r}_k})} \]$

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:39 
Аватара пользователя
а точно, получается уравнение непрерывности соблюдается автоматически?

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:41 
Sicker
Уравнение непрерывности можно получить либо как следствие калибровочной инвариантности (т.е. как следствие закона сохранения заряда), либо после того, как вы получите уравнения поля. При получении самих уравнений поля закон сохранения нигде не используется.

 
 
 
 Re: Теория поля
Сообщение03.07.2014, 19:42 
Аватара пользователя
а когда мы задается движение зарядов мы разве его автоматом не используем?

 
 
 [ Сообщений: 135 ]  На страницу 1, 2, 3, 4, 5 ... 9  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group