ребят, простите, не смог осилить эту тему, кому не лень подскажите, так же на пальцах дали доказательство этой штуки, про -1/12
скажите как её опровергнуть так же просто или согласиться с этой цепочкой, доказательство таково:
сперва найдём сумму
Sa = 1-1+1-1+1-1+...
для этого вычтем из единицы сию сумму:
1-Sa = 1 - (1-1+1-1+1-1+...)
1-Sa = 1-1+1-1+1-1+... => 1-Sa=Sa => Sa = 1/2
теперь найдём сумму
Sb = 1 - 2 +3 - 4 + 5 - 6 + ...
Sb+Sb = (1-2+3-4+5-6+...) + (1-2+3-4+5-6+...)
2Sb = (1-2+3-4+5-6+...) + (0+1-2+3-4+5-6+...) = 1-1+1-1+1-1+... => Sb=Sa/2=1/4
и окончательно для
S = 1+2+3+4+5+... :
S-Sb = (1+2+3+4+5+6+...)-(1-2+3-4+5-6+...) = (0+4+0+8+0+12+...) = 4(1+2+3+4+...) => S-Sb=4S => 3S=-Sb => S = -Sb/3 => S=-1/12
как то можно опровергнуть всю эту цепочку рассуждений так же на пальцах? (ведь вся цепочка вполне без высшей математики сделана), я сколько не думал, не нашёл решения или контр-примера с другими S1,S2,S
Определение. Если числовой ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (не абсолютно) сходящимся.
Теорема Римана об условно сходящихся рядах."Пусть ряд сходится условно, тогда для любого числа S можно так поменять порядок суммирования,
что (УСЛОВНАЯ, примечание) сумма нового ряда будет равна S".
Или: "Если ряд сходится условно, то для любого числа М можно так переставить члены этого ряда, чтобы преобразованный ряд имел своей (УСЛОВНОЙ) суммой именно число М".
Доказательство см. в учебниках.
Признаки, а точнее те свойства, которые гарантируют абсолютную сходимость,
абсолютной сходимости (вспоминая теорему: "Перестановка абсолютно сходящегося ряда приводит к ряду с той же суммой.") см. теория рядов и т.п.