2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 20:47 
Заслуженный участник


15/05/05
3445
USA
xmaister в сообщении #689786 писал(а):
Я лично читаю литературу с листочком и ручкой, при этом проделывать доказательства всех утверждений, приведенных в книги стараюсь сам, в "доказательства" не заглядывая.
Я стараюсь сначала быстро просмотреть книгу а уже потом решить, нужно ли ее, и всю ли, читать "всерьез".
Кроме того, даже в учебниках, не говоря уже о монографиях, не всегда выдерживается логическая линия. Иногда не вполне понятное доказательство становится понятным после прочтения следующей главы.

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 21:26 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Doil-byle в сообщении #690295 писал(а):
Просто я склонен к планированию буквально по страницам и на долгое время вперёд

А, ну это банально не работает.

Запомните главный принцип стратегии: что бы вы ни планировали, всё полетит к чёрту! :-)

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 21:38 


05/09/11
364
Петербург
Munin в сообщении #690325 писал(а):
Doil-byle в сообщении #690295 писал(а):
Просто я склонен к планированию буквально по страницам и на долгое время вперёд

А, ну это банально не работает.

Запомните главный принцип стратегии: что бы вы ни планировали, всё полетит к чёрту! :-)

И что же делать, если принять, что я не хочу, чтобы всё полетело к чёрту? Хочется же чувствовать, что идёшь по какому-то определённому пути, приводящему к желаемой цели.

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 21:45 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Doil-byle в сообщении #690333 писал(а):
И что же делать, если принять, что я не хочу, чтобы всё полетело к чёрту?

Готовиться к неожиданностям и закладываться на риски.

Doil-byle в сообщении #690333 писал(а):
Хочется же чувствовать, что идёшь по какому-то определённому пути, приводящему к желаемой цели.

В принципе, учебник - это хороший путь к желаемой цели. Просто нельзя думать, что вы пойдёте по нему со скоростью и непреклонностью паровоза.

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 23:02 
Заслуженный участник
Аватара пользователя


03/08/11
1613
Новосибирск
Munin в сообщении #690325 писал(а):
А, ну это банально не работает.

Почему же? Если почти весь материал курса известен, за исключением некоторых деталей, то вполне работает.

-- 03.03.2013, 00:03 --

А так да. Лично у меня еще не получалось ограничится одной книгой по теме, которую начинал.

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 23:15 
Заслуженный участник
Аватара пользователя


30/01/06
72407
xmaister в сообщении #690386 писал(а):
Почему же? Если почти весь материал курса известен, за исключением некоторых деталей, то вполне работает.

В этом случае обычно нет смысла читать книгу насквозь :-)

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 23:33 


22/05/09

685
xmaister в сообщении #690386 писал(а):
А так да. Лично у меня еще не получалось ограничится одной книгой по теме, которую начинал.


О, да! Начинаешь читать... Что-то понятно, а что-то не доходит. Приходится лезть в другие источники по той же теме.
А вообще кому-нибудь удавалось изучить некую широкую тему по одному источнику?

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 23:36 
Заслуженный участник
Аватара пользователя


03/08/11
1613
Новосибирск
Mitrius_Math
Ну разве что теория множеств. Открыл Куратовского-Мостовского и понеслась. Только такое изложение ТМ устарело ИМХО.

-- 03.03.2013, 00:43 --

Еще хотел спросить. Если выбрать отдельную главу для изучения и бегло с ней ознакомится, а потом уже нарешивать задачи по этой теме. Мне кажется, что все равно те моменты, которые быть может были упущены при прочтении всплывут. Не лучше ли так подойти?

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение02.03.2013, 23:47 


22/05/09

685
xmaister в сообщении #690396 писал(а):
Если выбрать отдельную главу для изучения и бегло с ней ознакомится, а потом уже нарешивать задачи по этой теме.


Я иногда делаю так, если тема сложна для меня. Беру теорию как данность, без доказательств, и решаю задачи. Складывается некоторое подобие понимания, которое помогает подобраться к пониманию доказательств фактов, принятых на веру.

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение04.03.2013, 15:50 
Заслуженный участник
Аватара пользователя


03/08/11
1613
Новосибирск
Спасибо за советы! У меня еще вопрос: Насколько нужно формализовывать утверждения на практике когда решаешь задачи? Ну т.е. нужно ли каждый проделывать все занудные теоретико-множественные рассуждения или достаточно будет простого не шибко формального обоснования?

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение04.03.2013, 15:54 
Заслуженный участник


11/05/08
32166
xmaister в сообщении #691096 писал(а):
Ну т.е. нужно ли каждый проделывать все занудные теоретико-множественные рассуждения

Не знаю, нужно ли -- знаю только, что никто никогда так не поступает (если, конечно, речь не о теории множеств).

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение04.03.2013, 15:56 
Заслуженный участник
Аватара пользователя


03/08/11
1613
Новосибирск
ewert
Т.е. достаточно бывает рассуждений "на пальцах". А не потеряются ли от этого какие-то мелкие детали в понимание? Т.е. вроде как и формализовать такие расуждения не формальные можно, но слишком уж занудно это все... Сейчас я имею в виду алгебру, если конкретно.

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение04.03.2013, 16:26 
Заслуженный участник


11/05/08
32166
Это в значительной степени дело вкуса. Вот сегодняшний пример.

Вопрос:
dmitryf в сообщении #691016 писал(а):
Если при этом $ KerA \supset KerB $ (1), то существует такой непрерывный линейный оператор С, отображающий G в F, что $A = CB$.

Доказательство. Рассмотрим для каждого элемента z из G его полный прообраз $B^{-1}z \in E$. Из условия (1) следует, что все элементы x, принадлежащие $B^{-1}z$, переводятся оператором А в один и тот же элемент y...

Второй вопрос, непонятно, как это следует из условия?

Ответ:
ewert в сообщении #691035 писал(а):
Фиксируйте какай-нибудь элемент из $B^{-1}z$. Любой другой элемент прообраза отличаются от этого фиксированного на некоторый элемент из ядра $B$ -- и, значит, тем более из ядра $A$. Следовательно, $A$ тем более переводит этот любой другой элемент туда же, что и тот фиксированный.

А можно было бы ответить, например, так:

Фиксируем $x_0\in B^{-1}z$; тогда

$(\forall x\in B^{-1}z)\;Bx=z=Bx_0\ \Rightarrow\ B(x-x_0)=0\ \Rightarrow$

$\Rightarrow\ (x-x_0)\in\operatorname{Ker}B\ \Rightarrow\ (x-x_0)\in\operatorname{Ker}A\ \Rightarrow\ Ax=Ax_0.$

И как лучше? В первом варианте изложение, конечно, чересчур разгильдяйское. Второй же не менее чрезмерно засушен. В любом случае думать надо первым способом (я, во всяком случае, иначе не умею), на а оформлять... Дело вкуса.

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение05.03.2013, 22:16 
Аватара пользователя


25/02/10
687
Как надо читать математическую литературу не знаю, но могу поделиться тем, как это делаю я :-) Так, как это делаете Вы - с карандашём в руках, пытаясь самостоятельно доказывать предложения, решая все примеры и т.д. я читаю только те очень немногие разделы, которые для меня принципиально важны и наиболее мне интересны. Наибольшее удовольствие получаю, когда случается самостоятельно "открыть" какой-нибудь достойный факт, который, разумеется, позже обнаруживается в дальнейшем материале.
Однако жизнь коротка и наполнена малоинтересной но необходимой деятельностью - читать весь нужный материал вышеописанным образом невозможно. Поэтому всё прочее я читаю "по диагонали", изредка решая только наиболее интересные задачи и рассчитывая на то, что в случае необходимости сумею разобраться. Alas, нет в жизни совершенства...

 Профиль  
                  
 
 Re: Как "правильно" читать математическую литературу?
Сообщение05.03.2013, 22:35 


28/11/11
2884
xmaister, не знаю как у вас, но мой (впрочем, маленький) опыт доказательств теорем показывает, что, или идея доказательства приходит мне в течение 20 минут, или не приходит вообще и приходится смотреть ход доказательства в книге.

Кстати, мне более всего нравилось по полезности доказывать не одному, а в маленьком коллективе сообща.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 39 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group