заметим, что логика (синтакис) противоречива в принципе, по Геделю
Неужели? А я думал, что соответствующая теорема Гёделя - о неполноте.
Да... "формула, утверждающая непротиворечивость теории (первого порядка), не является выводимой в ней" (2-я теорема о неполноте). Только это не Вы думали, а краз не думали... Например, зачем эта теорема (какой СМЫСЛ)?...
Подавляющее большинство студентов это не волнует. Подавляющее, потому, что в результате их интеллект остается на уровне возможностей логики первого порядка. Тамудизм легко вытесняет естественную способность рассудка к конструированию понятий. Но при этом опрощается и чувственная основа жизни, сознания. А это опасно, как в отношении к окружающим, так и в отношении собственного здоровья.Как видите, на Ваш короткий вопрос нельзя ответить столь же кратко.
Итак, противоречивость возникает в случае экстраполяции суждений в сторону недоказуемых аксиом, которые могут быть и скрытыми. Так обобщение доказательства теряет его собственную формальную основу и обретает новые, более глубокие основания, требующие доказательств их существования, как связанных с исходными. Однако, часто, это область содержательности понятий и не соответствует предмету математики, что и приводит к парадоксам, к противоречивости. Так, например "Лейбниц был первым учеником Ньютона, совершившим стандартную ошибку студентов.
, всего лишь доказав, что дифференциал суммы равен сумме дифференциалов слагаемых". (
В. И Арнольд, "Экспериментальная математика"). Это пример исключительной дедукции, разоблачаемый Арнольдом, как "аксиомофильство".
В то же время, содержательность, свойственность элементов анализа не констатируется. При этом аксиоматизация оснований оказывается противоречивой, в принципе. Ибо доказать аксиому (гипотезу) о пространстве невозможно (также и опровергнуть...). Этого объекта не существует в природе, в действительности (об этом в предшествующем посте...). И потому это обстоятельство, скажем так, не может быть выражено в принципе. Кроме того, это обстоятельство оказывается, как бы, контрапунктом для математики вообще (типа "экклезиаста" для измышлений о загробном счастье...).
Конечно, все сложнее, но Вы не любите читать...
И все же интеллектуальная недостаточность - отнюдь не безобидное явление. Ибо это не изначальное свойство природы, а результат последующего опрощения чувственной основы рассудка.
Могу это доказать, однако, если интересно, канешна.