2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Великая теорема Ферма, n=3
Сообщение15.06.2011, 19:43 


05/03/11
15
Здравствуйте, извиняюсь, что долго не отвечал на вопросы и замечания.
Попытаюсь, может запоздало, ответить на вопросы и дать кой-какие комментарии.
Хотя на многие вопросы за меня уже ответили (спасибо им).

venco в сообщении #455416 писал(а):
Alexey2 в сообщении #455396 писал(а):
т. к. $c-a=b_1^3$, значит $(c-a)=d^3x^3$, $x\in \mathbb{N}$
Это верно только если $d$ - простое.

venko - молодец, прямо в точку...

Поясню.
Alexey2 в сообщении #455396 писал(а):
$b=(c-a)\frac{k}{d}$

или $\dfrac{k}{d}=\dfrac{b}{c-a}=\dfrac{b_1 \cdot b_2}{b_2^3}=\dfrac{b_1 }{b_2^2}$
$k=b_1$, $d=b_2^2$
При этих значениях $k$, $b$ система уравнений
$\left\{ \begin{matrix}
   b=(c-a)\dfrac{k}{d}  \\
   b^2=(c^2+ac+a^2)\dfrac{d}{k}  \\
\end{matrix} \right.$
и при $(c-a)=b_1^3$, $c^2+ca+a^2=b_2^3$
превращается в систему тождественно равных уравнений:
$\left\{ \begin{matrix}
   b=(b_1^3)\dfrac{b_2}{b_1^2}=b_1 \cdot b_2=b  \\
   b^2=(b_2^3)\dfrac{b_1^2}{b_2}=b^2  \\
\end{matrix} \right.$

А значит никакого противоречия быть не может.

Belfegor дальше задает вот такой вопрос:
(Цитатой воспользоваться не могу - при цитировании какие-то ошибки в формула, поэтому цитату выделю курсивом)

Alexey!
6. $\left\{ \begin{matrix}
   c=(a+b)\frac{k}{d}  \\
   c^2=(a^2-ab+b^2)\frac{d}{k}  \\
\end{matrix} \right.

Я возвел первое уравнение этой системы в квадрат и вот что у меня получилось после ряда преобразований:
$(a + b)^2 < (a + b)^2 - 3ab$
Что вы скажете об этом противоречии?


Это не противоречие.
6. $\left\{ \begin{matrix}
   c=(a+b)\frac{k}{d}  \\
   c^2=(a^2-ab+b^2)\frac{d}{k}  \\
\end{matrix} \right.
Первое уравнение системы
$c=(a+b)\frac{k}{d}$ выполняется всегда - всегда существуют такие $k$ и $d$, для которых $\dfrac{k}{d}=\dfrac{c}{a+b}$
Допустим, что второе уравнение системы $c^2=(a^2-ab+b^2)\frac{d}{k}$ не выполнимо,
тогда существуют такие $m$ и $n$ для которых справедливо следующее $c^2=(a^2-ab+b^2)\frac{m}{n}$ Понятно, что $m\ne k$ и $n\ne d$
и получим следующее уравнение:
$c^3=(a+b)\frac{k}{d}\cdot(a^2-ab+b^2)\frac{m}{n}=c$
Ввиду парности простоты чисел $k$, $d$, $m$, $n$ приходим к противоречию - не выполнима формула сокращенного умножения.
Кстати в рассуждениях у вас ошибка и её вам любезно указал участник Алексей К. (за что ему большое спасибо).
Алексей К. в сообщении #455896 писал(а):
А во-первых, я бы, конечно, попробовал (или не встревал бы), если бы Вы, кроме двух процитированных Вами равенств, процитировали бы и условие $k>d$.

Если $k>d$, то $c>(a+b)$, тогда $c>(a+b)$ то $(a+b)^3$ должно быть меньше $c^3=a^3+b^3$ чего быть не может.

Коровьев в сообщении #455930 писал(а):
Как это, как это, как
это? Очень даже уместен.

Согласен.
Извините пожалуйста если обидел, я просто хотел сказать, что ошибка у меня в рассуждениях прежде всего - система п.6. справедлива только в тех случаях, если $d$ - простое (на что мне и указал venko), а ваш контрпример является следствием этой ошибки.



P.s. Всё бы ничего, но я догадывался что ошибка кроется именно в этом месте.

И я так долго не отвечал не вопросы по следующей причине.
Вместо пятого параграфа можно записать по-другому:
(особенно нижеследующее будет интересно почитать участнику под именем Belfegor (молодец - к такому же противоречию придёт (или пришел уже)).

Рассмотрим следующий случай:
r-aax в сообщении #452029 писал(а):
Alexey2 в сообщении #451988 писал(а):
...случай решения уравнения $a^3+b^3=c^3$, где ни один из членов $a$, $b$, $c$ не делится на 3.

Хотя бы один из них делится.


Допустим $c\vdots 3$
Тогда рассмотрим уравнение

$(x-a)^3+a^3=c^3$, где $x=(a+b)$

$x^3-3x^2a+3xa^2-a^3+a^3=c^3$

$c^3=x^3-3x^2a+3xa^2$

$c^3=c_1^3c_2^3=x(x^2-3xa+3a^2)$

$(a+b)=x\vdots 3$ тогда:

$x=3m$,

$c_2^3=3n$

$3^2m^2-3\cdot 3ma+3a^2=3^3n^3\vdots 3$

где $m$ и $n\in \mathbb{N}$

$\Rightarrow a\vdots 3\Rightarrow (a,c)\ne1$


Но ведь не всегда $c$ кратно трем.
Допустим $b\vdots 3$

Тогда рассмотрим уравнение

$a^3+b^3=(a+y)^3$, где $y=(c-a)$

$a^3+b^3=a^3+3a^2y+3ay^2+y^3$

$b^3=y^3+3y^2a+3ya^2$

$b^3=b_1^3b_2^3=y(y^2+3ya+3a^2)$

$(c-a)=y\vdots 3$ тогда:

$y=3m$,

$b_2^3=3n$

$3^2m^2+3\cdot 3ma+3a^2=3^3n^3\vdots 3$

где $m$ и $n\in \mathbb{N}$

$\Rightarrow a\vdots 3\Rightarrow (a,b)\ne1$

Можно рассмотреть и случай когда $a\vdots 3$ - рассмотреть четвертое уравнение $(a^3+b^3=(z-b)^3)$
и прийти к противоречию, а можно и не рассматривать (ввиду взаимозаменяемости $a$ и $b$).

Основное противоречие:
"Если один из членов уравнения $a^3+b^3=c^3$ кратен трем, то как минимум, ещё один из членов тоже кратен трём, чего быть не может
(Если рассматривать только примитивные тройки $a$, $b$ и $c$, а если - не примитивные - то сократим на общий множитель и будем всё равно рассматривать примитивные)."

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение15.06.2011, 20:17 
Заслуженный участник


20/12/10
9111
Alexey2 в сообщении #458445 писал(а):
$c^3=c_1^3c_2^3=x(x^2-3xa+3a^2)$

Вы здесь утверждаете (и далее это используете), что оба сомножителя справа являются точными кубами. Но на каком основании? Ведь оба числа $x$ и $x^2-3xa+3a^2$ делятся на 3, а значит, не взаимно просты.

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение15.06.2011, 20:57 
Заслуженный участник
Аватара пользователя


23/07/05
17992
Москва
Alexey2 в сообщении #458445 писал(а):
Допустим $c\vdots 3$
Тогда рассмотрим уравнение

$(x-a)^3+a^3=c^3$, где $x=(a+b)$

$x^3-3x^2a+3xa^2-a^3+a^3=c^3$

$c^3=x^3-3x^2a+3xa^2$

$c^3=c_1^3c_2^3=x(x^2-3xa+3a^2)$

$(a+b)=x\vdots 3$ тогда:

$x=3m$,

$c_2^3=3n$

$3^2m^2-3\cdot 3ma+3a^2=3^3n^3\vdots 3$

где $m$ и $n\in \mathbb{N}$

$\Rightarrow a\vdots 3\Rightarrow (a,c)\ne1$
О том, что $x$ и $x^2-3xa+3a^2$ не обязаны быть кубами, так как не взаимно просты (имеют общий делитель $3$), Вам уже написали. Поскольку здесь $x$ обязан делиться на $3$, то, как легко видеть, $x^2-3xa+3a^2$ делится на $3$, но не делится на $3^2$. Однако $x$ и $\frac 13(x^2-3xa+3a^2)$ взаимно просты, поэтому $c^3=3x\cdot \frac 13(x^2-3xa+3a^2)$ - произведение двух взаимно простых чисел и, следовательно, каждое из них является кубом: $3x=c_1^3$ и $\frac 13(x^2-3xa+3a^2)=c_2^3$.
Ещё повозившись, можно доказать, что $c$ должно делиться на $3^2$. Но продвинуться дальше, рассматривая делимость на разные степени $3$, не удаётся.

Повторять эти рассуждения для случаев, когда на $3$ делится не $c$, а $b$ или $a$, нет необходимости, так как уравнение $a^3+b^3=c^3$ можно переписать в виде $a^3+(-c)^3=(-b)^3$ или $(-c)^3+b^3=(-a)^3$.

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение15.06.2011, 21:11 
Заслуженный участник


20/12/10
9111
Вот интересно: пробовал ли кто-нибудь из таких энтузиастов рассматривать делимость на 13? Ведь одно из $a$, $b$, $c$ должно делиться на 13.

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение17.06.2011, 11:10 


23/01/07
3497
Новосибирск
nnosipov в сообщении #458497 писал(а):
Вот интересно: пробовал ли кто-нибудь из таких энтузиастов рассматривать делимость на 13? Ведь одно из $a$, $b$, $c$ должно делиться на 13.

Я пробовал рассматривать подобное, но в контексте анализа делимости одного из чисел $x, y, z$ на все простые числа вида $2^kn+1$ ($k$ - натуральные, $n$ - степени ВТФ). Но далеко продвинуться не сумел.

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение17.06.2011, 23:45 


16/08/09
304
Alexey 2!
Ваш тезка ничего не понял, потому что кроме моего поста не прочитал ни строчки, а просто удивился как из двух равенств получилось неравенство! Потом сам же извинился. :roll:
Если вам не сложно, покажите ещё раз где в моих рассуждениях ошибка:
Итак: В вашей системе $\[ k > d \]$
возводим 1-ое уравнение в квадрат, получаем:
$\[ c^2 = (a + b)^2 \frac{{k^2 }} {{d^2 }} \]$
С учетом 2-го уравнения получаем:
$\[ c^2 = (a + b)^2 \frac{{k^2 }} {{d^2 }} = (a^2 - ab + b^2 )\frac{d} {k} = ((a + b)^2 - 3ab)\frac{d} {k} \]$
То есть:
$\[ (a + b)^2 \frac{{k^2 }} {{d^2 }} = ((a + b)^2 - 3ab)\frac{d} {k} \]$
Умножим обе стороны на $\[ d^2 k \]$
$\[ (a + b)^2 \frac{{k^2 }} {{d^2 }}d^2 k = ((a + b)^2 - 3ab)\frac{d} {k}d^2 k \]$
Получаем:
$\[ (a + b)^2 k^3 = ((a + b)^2 - 3ab)d^3 \]$
Т.к. $\[ k^3 > d^3 \]$
$\[ (a + b)^2 < (a + b)^2 - 3ab \] $

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение23.06.2011, 16:41 


05/03/11
15
nnosipov в сообщении #458465 писал(а):
Alexey2 в сообщении #458445 писал(а):
$c^3=c_1^3c_2^3=x(x^2-3xa+3a^2)$

Вы здесь утверждаете (и далее это используете), что оба сомножителя справа являются точными кубами. Но на каком основании? Ведь оба числа $x$ и $x^2-3xa+3a^2$ делятся на 3, а значит, не взаимно просты.

Согласен со всем утверждением. Не обязательно $c_1$ и $c_2$ должны быть точными кубами.

Ниже я приведу рассуждения, в которых этот факт не используется и постараюсь ответить на вопросы участника Someone.

Допустим $c \vdots 3$

Рассмотрим уравнение $(x-a)^3+a^3=c^3$, где $(a+b)=x$

$x^3-3x^2a+3xa^2-a^3+a^3=c^3$

$x(x^2-3xa+3a^2)=c^3$

Пусть $x \vdots 3$ и $c^3 \vdots 3^3$,

$x^2-3xa+3a^2= \dfrac{c^3}{x}$

Ввиду того, что $c^3\vdots 3^3$ и $x \vdots 3$ приходим к выводу $x^2-3xa+3a^2\vdots 3^2$

Поэтому с замечанием Someone
Someone в сообщении #458488 писал(а):
Поскольку здесь $x$ обязан делиться на $3$, то, как легко видеть, $x^2-3xa+3a^2$ делится на $3$, но не делится на $3^2$
я не согласен.
(Вот, к примеру, контрпример: Допустим $x^2-3xa+3a^2\vdots 3$ и $x \vdots 3$, тогда $c^3=x(x^2-3xa+3a^2) \vdots 3^2$ (а не $c^3 \vdots 3^3$)).

Так как $x^2-3xa+3a^2\vdots 3^2$ и $x \vdots 3$ приходим к выводу $a\vdots 3$, а значит и $(c,a) \ne 1$

Значит, если $c \vdots 3$, то $x=(a+b) \vdots 3^2$. В противном случае $(c,a) \ne 1$.

(Это единственный возможный вариант. Если $x \vdots 3^3$ или вообще $x \vdots 3^k$, где $k>2$, $k \in \mathbb{N}$ то прийдем к следующему выводу: $(c,a) \ne 1$)

Someone в сообщении #458488 писал(а):
Но продвинуться дальше, рассматривая делимость на разные степени $3$, не удаётся.

Не доказано.

Например, никто вам, Someone, не запрещает рассуждать следующим образом:
Someone в сообщении #458488 писал(а):
Ещё повозившись, можно доказать, что $c$ должно делиться на $3^2$.

(Попозже я опубликую, как можно прийти к этому выводу).

Допустим $c \vdots 3^2$ и $x=(a+b) \vdots 3^2$

Рассмотрим уравнение $a^3+b^3=c^3$

Преобразуем его так же, как сделал участник Belfegor в соседней теме:

$c^3=(a+b)((a+b)^2-3ab)$

Заменив $(a+b)$ на $x$ получим следующее уравнение:

$c^3=x(x^2-3ab)$

так как $c \vdots 3^2$ , а значит $c^3 \vdots 3^6$ и $x \vdots 3^2$

приходим к выводу $(x^2-3ab) \vdots 3^4\Rightarrow 3ab \vdots 3^4\Rightarrow a\vdots 3^3\Rightarrow (c,a) \ne 1$

Someone в сообщении #458488 писал(а):
Повторять эти рассуждения для случаев, когда на $3$ делится не $c$, а $b$ или $a$, нет необходимости, так как уравнение $a^3+b^3=c^3$ можно переписать в виде $a^3+(-c)^3=(-b)^3$ или $(-c)^3+b^3=(-a)^3$.

Я это знаю, можно было написать так: "Умаляя $c \vdots 3$".

Belfegor в сообщении #459342 писал(а):
Alexey 2!
Ваш тезка ничего не понял, потому что кроме моего поста не прочитал ни строчки, а просто удивился как из двух равенств получилось неравенство! Потом сам же извинился. :roll:
Если вам не сложно, покажите ещё раз где в моих рассуждениях ошибка:
Итак: В вашей системе $\[ k > d \]$
возводим 1-ое уравнение в квадрат, получаем:
$\[ c^2 = (a + b)^2 \frac{{k^2 }} {{d^2 }} \]$
С учетом 2-го уравнения получаем:
$\[ c^2 = (a + b)^2 \frac{{k^2 }} {{d^2 }} = (a^2 - ab + b^2 )\frac{d} {k} = ((a + b)^2 - 3ab)\frac{d} {k} \]$
То есть:
$\[ (a + b)^2 \frac{{k^2 }} {{d^2 }} = ((a + b)^2 - 3ab)\frac{d} {k} \]$
Умножим обе стороны на $\[ d^2 k \]$
$\[ (a + b)^2 \frac{{k^2 }} {{d^2 }}d^2 k = ((a + b)^2 - 3ab)\frac{d} {k}d^2 k \]$
Получаем:
$\[ (a + b)^2 k^3 = ((a + b)^2 - 3ab)d^3 \]$
Т.к. $\[ k^3 > d^3 \]$
$\[ (a + b)^2 < (a + b)^2 - 3ab \] $


Мне не сложно, ещё раз показать, где у вас ошибка.
Ошибка у вас в первой же строчке.
Belfegor в сообщении #459342 писал(а):
Итак: В вашей системе $\[ k > d \]$


У меня в системе всегда $k<d$ (правда, написано не в явном виде).
Alexey2 в сообщении #452364 писал(а):


5. $c<(a+b)<2c\Rightarrow 1<\frac{a+b}{c}<2$

6. $\left\{ \begin{matrix}
   c=(a+b)\frac{k}{d}  \\
   c^2=(a^2-ab+b^2)\frac{d}{k}  \\
\end{matrix} \right.



$1<\dfrac{a+b}{c}<2$
подставив в это неравенство $\dfrac{a+b}{c}=\dfrac{d}{k}$
получим следующее неравенство:
$1<\dfrac{d}{k}<2$, откуда видим, что $k<d$.

Справедливости ради ещё раз процитирую участника Алексей К.:

Алексей К. в сообщении #455896 писал(а):
А во-первых, я бы, конечно, попробовал (или не встревал бы), если бы Вы, кроме двух процитированных Вами равенств, процитировали бы и условие $k>d$.

Он вам указывал на ту же ошибку.

Belfegor в сообщении #459342 писал(а):
Ваш тезка ничего не понял
- утверждение смелое, но ложное.

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение23.06.2011, 17:43 
Заслуженный участник


20/12/10
9111
Alexey2 в сообщении #461466 писал(а):
Пусть $x \vdots 3$ и $c^3 \vdots 3^3$,

$x^2-3xa+3a^2= \dfrac{c^3}{x}$

Ввиду того, что $c^3\vdots 3^3$ и $x \vdots 3$ приходим к выводу $x^2-3xa+3a^2\vdots 3^2$


А, собственно, на каком основании Вы делаете такой вывод? Приведите доказательство.
Alexey2 в сообщении #461466 писал(а):
Поэтому с замечанием Someone
Someone в сообщении #458488 писал(а):
Поскольку здесь $x$ обязан делиться на $3$, то, как легко видеть, $x^2-3xa+3a^2$ делится на $3$, но не делится на $3^2$
я не согласен.


И напрасно. Если $x$ кратно 3, а $a$ не кратно 3, то $x^2-3xa+3a^2$ делится на $3$, но не делится на $3^2$. Это верное утверждение, которое действительно легко доказать.

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение23.06.2011, 20:25 


15/12/05
754
Цитата:
Someone в сообщении #458488 писал(а):
Повторять эти рассуждения для случаев, когда на $3$ делится не $c$, а $b$ или $a$, нет необходимости, так как уравнение $a^3+b^3=c^3$ можно переписать в виде $a^3+(-c)^3=(-b)^3$ или $(-c)^3+b^3=(-a)^3$.

Я это знаю, можно было написать так: "Умаляя $c \vdots 3$".


Что-то не по-русски - "Умаляя.." Созвучно с "Умоляя"...

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение24.06.2011, 00:07 


16/08/09
304
Alexey2 в сообщении #453224 писал(а):
9. $b^2 \in \mathbb{N}\Rightarrow c^2+ca+a^2=k^3y^3$, $y\in \mathbb{N}$, $x\bot y$

10.$\left\{ \begin{matrix} b=d^3x^3\frac{k}{d}=d^2x^3k \\ b^2=k^3y^3\frac{d}{k}=k^2y^3d \\ \end{matrix}\right.$

$\Rightarrow d^4x^6k^2=k^2y^3d$

11. $d^3x^6=y^3$

12. $(c-a)x^3=y^3$

Уважаемый Алексей 2! :-) Если X и Y взаимно просты в 9, то уже в 11 противоречие! :shock:

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение24.06.2011, 16:03 
Заслуженный участник
Аватара пользователя


23/07/05
17992
Москва
Alexey2 в сообщении #461466 писал(а):
Допустим $c \vdots 3$

Рассмотрим уравнение $(x-a)^3+a^3=c^3$, где $(a+b)=x$

$x^3-3x^2a+3xa^2-a^3+a^3=c^3$

$x(x^2-3xa+3a^2)=c^3$

Пусть $x \vdots 3$ и $c^3 \vdots 3^3$,

$x^2-3xa+3a^2= \dfrac{c^3}{x}$

Ввиду того, что $c^3\vdots 3^3$ и $x \vdots 3$ приходим к выводу $x^2-3xa+3a^2\vdots 3^2$

Поэтому с замечанием Someone
Someone в сообщении #458488 писал(а):
Поскольку здесь $x$ обязан делиться на $3$, то, как легко видеть, $x^2-3xa+3a^2$ делится на $3$, но не делится на $3^2$
я не согласен.
С чем тут можно не соглашаться-то? У Вас $x$ делится на $3$, поэтому слагаемые $x^2$ и $3xa$ делятся на $9$. Поскольку $a$ не делится на $3$, то $3a^2$ делится на $3$ и не делится на $9$. Поэтому и выражение $x^2-3xa+3a^2$ делится на $3$ и не делится на $9$.

Alexey2 в сообщении #461466 писал(а):
(Вот, к примеру, контрпример: Допустим $x^2-3xa+3a^2\vdots 3$ и $x \vdots 3$, тогда $c^3=x(x^2-3xa+3a^2) \vdots 3^2$ (а не $c^3 \vdots 3^3$)).
Когда Вы укажете конкретные числа $x,a,c$, тогда и будет контрпример, а пока это не контрпример, а беспочвенные фантазии, к тому же, с неосуществимыми условиями. Попробуйте придумать такое натуральное число $c$, чтобы $c^3$ делилось на $3^2$, но не делилось на $3^3$.

Alexey2 в сообщении #461466 писал(а):
Пусть $x \vdots 3$ и $c^3 \vdots 3^3$,

$x^2-3xa+3a^2= \dfrac{c^3}{x}$

Ввиду того, что $c^3\vdots 3^3$ и $x \vdots 3$ приходим к выводу $x^2-3xa+3a^2\vdots 3^2$
Условие "$x$ делится на $3$" не означает, что $x$ не делится на $9$. Если же Вы такое требование добавите, то получите противоречивые условия.

Alexey2 в сообщении #461466 писал(а):
Так как $x^2-3xa+3a^2\vdots 3^2$ и $x \vdots 3$ приходим к выводу $a\vdots 3$, а значит и $(c,a) \ne 1$

Значит, если $c \vdots 3$, то $x=(a+b) \vdots 3^2$. В противном случае $(c,a) \ne 1$.

(Это единственный возможный вариант. Если $x \vdots 3^3$ или вообще $x \vdots 3^k$, где $k>2$, $k \in \mathbb{N}$ то прийдем к следующему выводу: $(c,a) \ne 1$)

Someone в сообщении #458488 писал(а):
Но продвинуться дальше, рассматривая делимость на разные степени $3$, не удаётся.

Не доказано.
Ну, я это и не формулировал как доказанное утверждение. Известно, однако, что никому не удалось доказать, например, что одно из чисел $a,b,c$ должно делиться на $3^3$.

Вообще, рассмотрение уравнения $a^3+b^3=c^3$ по модулю всевозможных степеней $3$ равносильно рассмотрению его в кольце $3$-адических чисел. А в этом кольце уравнение Ферма имеет решения, причём, такие, в которых одно из чисел $a,b,c$ делится на $9$, но не делится на $27$. Вот одно из таких решений (приведены $80$ младших троичных цифр чисел $a,b,c$): $$a=\ldots 1120210001 1012000222 0002002121 0011020200 0001202202 2001212221 2001102201 1212000201_3,$$ $$b=\ldots 1010010200 0111022220 0122122220 0012120012 0210002211 2022111020 0012200022 2102021100_3,$$ $$c=\ldots 1111010221 1110112222 1210122012 0022102000 2020021201 2211000022 0110122212 2212100201_3.$$

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение24.06.2011, 18:45 


16/08/09
304
Alexey2 в сообщении #453224 писал(а):
$c-a=b_1^3$

5. $c^3-a^3=(c-a)(c^2+ca+a^2)=b^3$

6. $c-a=b_1^3 \Rightarrow c^2+ca+a^2=b_2^3, b_2\in \mathbb{N}$, $b_1\bot b_2$

7. $\left\{ \begin{matrix} b=(c-a)\frac{k}{d} \\ b^2=(c^2+ac+a^2)\frac{d}{k} \\ \end{matrix} \right.$

$k,d\in \mathbb{N}$, $k\bot d$

8. $b\in \mathbb{N}\Rightarrow c-a=d^3x^3$, $x\in \mathbb{N}$

9. $b^2 \in \mathbb{N}\Rightarrow c^2+ca+a^2=k^3y^3$, $y\in \mathbb{N}$, $x\bot y$

10.$\left\{ \begin{matrix} b=d^3x^3\frac{k}{d}=d^2x^3k \\ b^2=k^3y^3\frac{d}{k}=k^2y^3d \\ \end{matrix}\right.$

$\Rightarrow d^4x^6k^2=k^2y^3d$

11. $d^3x^6=y^3$

12. $(c-a)x^3=y^3$

13. $c^2+ca+a^2\vdots y^3\Rightarrow c^2+ca+b^2\vdots (c-a)$

14. Рассмотрим число $\frac{c^2+ca+a^2}{c-a}$

15. Числа $a$ и $c$ - нечетные, значит число $(c^2+ca+a^2)$ - нечетное, $(c-a)$ - четное.
$ \frac{c^2+ca+a^2}{c-a}$. Как видим в числителе всегда получается нечетное число, а в знаменателе -четное. Нечетное число на четное нацело никогда не делится, значит $c-a\ne b_1^3$.

Мне кажется вполне достаточно одной этой выкладки для удивленно-восхищенного вскрика: Свершилось! Браво, Метр Алексей 2! Пустопорожние разговоры о кратности 3 абсолютно не нужны, они лишние! Для ВТФ при n=3 вполне хватает этой выкладки. Более того всё прекрасно работает для любой нечётной степени!!! Мэтры молчат "катастрофически" :shock: долго! а о чем это говорит? :D ПОБЕДА! :lol:

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение25.06.2011, 08:58 


23/01/07
3497
Новосибирск
Belfegor в сообщении #461911 писал(а):
Alexey2 в сообщении #453224 писал(а):

14. Рассмотрим число $\frac{c^2+ca+a^2}{c-a}$

15. Числа $a$ и $c$ - нечетные, значит число $(c^2+ca+a^2)$ - нечетное, $(c-a)$ - четное.
$ \frac{c^2+ca+a^2}{c-a}$. Как видим в числителе всегда получается нечетное число, а в знаменателе -четное. Нечетное число на четное нацело никогда не делится, значит $c-a\ne b_1^3$.

Мне кажется вполне достаточно одной этой выкладки для удивленно-восхищенного вскрика: Свершилось! Браво, Метр Алексей 2! Пустопорожние разговоры о кратности 3 абсолютно не нужны, они лишние! Для ВТФ при n=3 вполне хватает этой выкладки. Более того всё прекрасно работает для любой нечётной степени!!! Мэтры молчат "катастрофически" :shock: долго! а о чем это говорит? :D ПОБЕДА! :lol:

Мэтры молчат, по-видимому потому, что "катастрофически" устали подобное комментировать.
Я - не мэтр, поэтому отвечу, что полученное выражение ни о чем не говорит, кроме того, что при разложении разности кубов нечетных чисел всегда получается одна скобка четная, другая нечетная.

Тем более, что подобные выкладки можно получать коротенько:

$b^3=(c-a)(c^2+ca+a^2)$

$k=\dfrac{b}{c-a}=\dfrac{c^2+ca+a^2}{b^2}$, где $k$ - рациональное число.

$k^3=\dfrac{b^2}{(c-a)^2}\cdot \dfrac{c^2+ca+a^2}{b^2}=1+\dfrac{3ca}{(c-a)^2}$

Заодно поймете, почему $3$ - может быть единственным возможным общим множителем.

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение25.06.2011, 14:04 


16/08/09
304
Батороев в сообщении #462030 писал(а):
Мэтры молчат, по-видимому потому, что "катастрофически" устали подобное комментировать.
Я - не мэтр, поэтому отвечу, что полученное выражение ни о чем не говорит, кроме того, что при разложении разности кубов нечетных чисел всегда получается одна скобка четная, другая нечетная.

А всё что до пункта 14? Это вам не интересно? :? То что одна скобка четная, другая нечетная заметили многие. :-) Но к этому пришли как к противоречию, вы что не видите или не хотите видеть? Прокомментируйте, пожалуйста, весь приведенный пример, а не его окончание :wink:

 Профиль  
                  
 
 Re: Великая теорема Ферма, n=3
Сообщение25.06.2011, 17:47 


23/01/07
3497
Новосибирск
Belfegor в сообщении #462100 писал(а):
А всё что до пункта 14? Это вам не интересно? :? То что одна скобка четная, другая нечетная заметили многие. :-) Но к этому пришли как к противоречию, вы что не видите или не хотите видеть? Прокомментируйте, пожалуйста, весь приведенный пример, а не его окончание :wink:

До пункта 14 смотреть не интересно потому, что знаю, что никакими ухищрениями "обмануть арифметику" невозможно. Хоть проведите тысячу преобразований и переобозначений, все равно не придете к тому, что одно число должно делиться на другое, если эти числа взаимнопростые, ну или хотя бы имеют один общий множитель. Ищите в этих пунктах ошибку/ки!

-- 25 июн 2011 22:36 --

Чтобы не быть голословным, все же прошелся по выкладкам:

$d=\dfrac{k(c-a)}{b}$

$d^3=\dfrac{k^3(c-a)^3}{b^3}$

$d^3\cdot\dfrac{b^3}{k^3(c-a)^2}=(c-a)$

$(c-a)=d^3x^3$

$x^3=\dfrac{b^3}{k^3(c-a)^2}$

Ну, и какое же $x$ натуральное число?!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 60 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group