Ну да ладно. Ваше утверждение все равно можно использовать для решения вопроса о представлении в виде суммы двух квадратов натуральных чисел. Из него, например, следует, что если какое либо число непредставимо в таком виде, то его произведение на квадрат какого-либо натурального числа тоже нельзя представить в виде суммы двух квадратов натуральных чисел (именно это меня и интересует).
Всё немного сложнее: число
нельзя представить суммой двух квадратов натуральных чисел, а произведение числа
на
, т.е. число
--- можно. В качестве полезного упражнения рекомендую аккуратно сформулировать критерий (необходимые и достаточные условия) представимости натурального числа в виде суммы двух квадратов натуральных чисел.