fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Прямоугольник 1*5
Сообщение16.02.2011, 21:15 


22/01/11

6
Дан прямоугольник $1\cdot5$
Как разрезать его на равные части и сложить из них квадрат?

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение16.02.2011, 21:28 
Заслуженный участник
Аватара пользователя


01/08/06
3158
Уфа
Надо же, такая красивая задача, а я о ней не слыхал...

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение16.02.2011, 21:30 
Заслуженный участник


04/05/09
4596
У меня получилось довольно много частей.

(Оффтоп)


 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение16.02.2011, 22:08 
Заслуженный участник
Аватара пользователя


07/01/10
2015
Изображение

Изображение

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение16.02.2011, 22:22 
Заслуженный участник


04/05/09
4596
Ага. Только можно ещё все треугольники сделать с одинаковой ориентацией.

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение17.02.2011, 08:06 


23/01/07
3516
Новосибирск
Можно сократить количество частей:

Изображение

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение17.02.2011, 09:57 
Заслуженный участник
Аватара пользователя


07/01/10
2015
Батороев
Wolf000 в сообщении #413815 писал(а):
Как разрезать его на равные части и сложить из них квадрат?


venco в сообщении #413830 писал(а):
Только можно ещё все треугольники сделать с одинаковой ориентацией.

Изображение

Изображение

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение17.02.2011, 11:25 


23/01/07
3516
Новосибирск
Извиняюсь! :oops: Спутал с другой известной задачей: "Разрезать пять одинаковых квадратов на две части и сложить из них новый квадрат".

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение22.02.2011, 01:16 


06/12/06
347
Wolf000 в сообщении #413815 писал(а):
Дан прямоугольник $1\cdot5$
Как разрезать его на равные части и сложить из них квадрат?

Эту задачку можно обобщить для прямоугольника $n\times m$, где на натуральные числа $n$ и $m$ наложены определенные условия.

(Какие именно условия)


Такой прямоугольник можно разрезать на равные части так, чтобы можно было из них составить квадрат.

(На какое именно число частей)



(Оффтоп)


 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение22.02.2011, 09:32 
Заслуженный участник


12/09/10
1547

(Оффтоп)


 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение22.02.2011, 15:50 


06/12/06
347

(Оффтоп)


 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение22.02.2011, 19:40 
Заслуженный участник


20/12/10
9179
Александр Т. в сообщении #415758 писал(а):
Cash в сообщении #415671 писал(а):
Число разлагается на сумму двух квадратов, тогда и только тогда, когда
все его нечетные простые делители дают остаток 1 при делении на 4.

Контрпример: число 90 имеет простой нечетный делитель 3, который не дает остаток 1 при делении на 4, но $90=3^2+9^2$.


Натуральное число представляется суммой двух квадратов тогда и только тогда, когда
любой его простой делитель вида $4k-1$ входит в каноническое разложения этого числа в чётной степени.

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение22.02.2011, 20:17 


06/12/06
347

(Оффтоп)


 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение22.02.2011, 20:34 
Заслуженный участник


20/12/10
9179
Александр Т. в сообщении #415829 писал(а):

(Оффтоп)



Разумеется, никаких. Я имел в виду квадраты целых чисел. Если в каноническом разложении числа есть хотя бы один простой делитель вида $4k+1$ или двойка в нечётной степени, то будет и представление в виде суммы двух квадратов натуральных чисел (а иначе --- не будет).

 Профиль  
                  
 
 Re: Прямоугольник 1*5
Сообщение22.02.2011, 21:01 
Заблокирован
Аватара пользователя


17/06/09

2213

(Оффтоп)



-- Вт фев 22, 2011 22:04:08 --

(Оффтоп)


 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 19 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group