1.Почему это УШ а не УД в форме УШ?
Потому что любое уравнение в форме УШ - это УШ. Частный случай УШ, если угодно.
Вы можете повторить тот же самый вывод для КГ?
Нет, там будет сложнее.
По вашему берем любое уравнение движения, пишем его квантовый вариант во "втором смысле" и группируя слева производную по времени получаем УШ?
Нет. Всё сложней. Во-первых, чтобы "написать квантовый вариант во втором смысле", требуется произвести сложное действие: проквантовать теорию. Во-вторых, если это сделано, то тогда УШ пишется элементарно: производная по времени равна функционалу энергии, записанному через результат квантования. Просто в случае Дирака можно сделать это быстрее и записать УШ сразу.
2.Физ смысл второго уравнения вы можете озвучить? Только чур не констатировать очередной раз,что есть операторы и амплитуды и это и есть КТП.
Вот это главный вопрос. На него можно ответить кратко только двумя способами: констатировать нечто в некоторых терминах, которые вам незнакомы, либо отослать к учебникам. Можно ответить полно: пересказать учебник. Мне не хочется второго, вам не хочется первого. Давайте так: вы скажете, какие термины и понятия вы знаете, я в них постараюсь этот смысл выразить. Не зная, на какую базу я могу опираться, я не смогу ничего сэкономить.
Начать можно вот с чего: вам известно, что такое оператор физической величины, и какой физический смысл имеет его применение к вектору состояния? Точнее, будем говорить сразу о представлении Гейзенберга, и об операторе физической величины в заданный момент времени,
Особенно, если движение квантовой системы происходит в пространстве с обобщёнными координатами
то какой физический смысл имеют операторы
и какой физический смысл имеет
? А так же соответствующие им операторы обобщённых импульсов
?
-- 28.12.2010 16:45:38 --при квантовании ЭЛМ поля.
Кстати, если квантование электромагнитного поля вам знакомо, то я вообще не понимаю, какие проблемы. Уравнение Максвелла точно так же становится уравнением Шрёдингера, как и уравнение Дирака. Функция
точно так же становится оператором, как и функция
всего-то и различие, что одна векторная, а другая спинорная. Более того, уравнение Максвелла в форме Майорана (Ахиезер-Берестецкий § 2.1, тж. см. Б-Ш § 4.4) и выглядит как уравнение Дирака:
(в случае КТП снова подразумевается приписанной справа
).