А я вот так и не врубился до конца в статистику.
А у нас разные люди читали тервер и статистику. Тервер давался в максимально абстрактном виде. Статистику же опосля читал "практик", который, конечно, с одной стороны доказывал всякие там

и Фишеров, а, с другой стороны, постоянно делал упор на применение всего этого. В результате тервер понравился крайне, статистика не понравилась совсем.
-- Сб ноя 06, 2010 18:03:34 --Вас обманули, на самом деле все наоборот
Это не они, это я всех обманываю. Кругом в голос твердят, что с непрерывным сабжем легче, я не верю. Нет, конечно, физическая интуиция считать интегралы с физматшколы осталась, но глубокое убеждение, что это всё некрасиво, хоть иногда и понятно, постоянно живёт в душе.
У нас в Институт Математики как-то раз одна дама из техперсонала принесла интеграл, заданный внуку на дом на первом курсе универа. И по глупости пошла с ним зачем-то в отдел математической логики! И что бы вы думали? Зав. отделом академик РАН не решил, зав. лабораторией член-корр. не решил... В конце-концов решил я

Просто у меня матан был 5 лет назад, а у них 25 или 40, какие нафиг интегралы с логарифмами?
академик А. И. Мальцев писал(а):
Математика заканчивается там, где начинаются интегралы.
Проблема в том, что в непрерывной математике нельзя достичь абсолютной строгости. Пока излагаем основы, вроде всё нормально, последовательность-подпоследовательность-для любого

существует

, но это всё основы, а стоит пойти чуть-чуть далее, как начинается: подвигаем чуть чуть точку или кривую, в малой окрестности, понятно, что если числа лежат рядом... Логика подменяется интуицией! Между тем только благодаря логике мы имеем странные кривые вроде кривой Пеано и прочие не согласующиеся с повседневным опытом вещи. А ведь математика --- это средство убежать от обыденности! Так что лучше дискретная
