2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 7  След.
 
 Пробелы в образовании
Сообщение17.10.2010, 18:48 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Окончив мехмат со средним баллом 4.85, так и не узнал, что такое тензор. И до сих пор толком не знаю :oops:

А ещё так и не понял практически ничего про ряды Фурье. Лекции по матану с этой темой пропустил, перед экзаменом пробовал освоить по Фихтенгольцу, но ни асилил :oops: Так и остались эти ряды для меня белым пятном в матане...

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение17.10.2010, 18:55 
Заслуженный участник


11/05/08
32166
А я так и не узнал, что такое топология. И до сих пор не знаю. Впрочем, это потому, что я заканчивал не мехмат и даже не матмех, а физфак, хотя и по математической специальности.

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение17.10.2010, 19:37 
Заслуженный участник
Аватара пользователя


04/04/09
1351
ewert в сообщении #363012 писал(а):
А я так и не узнал, что такое топология. И до сих пор не знаю.

Топология -- самое простое и полезное, что было изобретено математиками. Заметили пару свойств открытых множеств на прямой, объявили их аксиомами, решили задачу как точка соотносится с множеством, дали гениальное определение непрерывности отображения. Остальное свалилось на голову само. Про свои пробелы в знаниях промолчу. Помню как заканчивал шестой класс.

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 13:30 


22/05/09

685
Профессор Снэйп в сообщении #363008 писал(а):
А ещё так и не понял практически ничего про ряды Фурье. Лекции по матану с этой темой пропустил, перед экзаменом пробовал освоить по Фихтенгольцу, но ни асилил Так и остались эти ряды для меня белым пятном в матане...


Профессор Снэйп, а Вам не приходилось читать курс математического анализа? :roll:

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 14:18 
Заслуженный участник
Аватара пользователя


03/02/10
1928
ewert в сообщении #363012 писал(а):
А я так и не узнал, что такое топология. И до сих пор не знаю. Впрочем, это потому, что я заканчивал не мехмат и даже не матмех, а физфак, хотя и по математической специальности.

а нам в Политехе на физ.тех факультете читали:)

Мимо меня прошли абелевы интегралы стройно и вообще вся "классическая теория функций a-la Гурвиц-Курант"

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 16:02 
Заслуженный участник
Аватара пользователя


30/01/06
72407
В этой теме жалуются, или наоборот, хвастаются?

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 16:05 
Заслуженный участник
Аватара пользователя


01/08/06
3145
Уфа
Ну, кто как. Лично я горжусь тем, что моё образование подобно хорошему швейцарскому сыру: даже и не знаю, с какой области начать перечисление моих пробелов :lol:

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 16:26 


20/12/09
1527
А я вот теоретическую механику в свое время не усвоил.
Я не готовился, пришел сдавать досрочно, а мне поставили 5-ку не спрашивая, потому что я решал все задачи.
А чтобы задачи решать не надо знать теорию: лагранжианы, гамильтонианы, скобки Пуассона, разделение переменных.
Ведь задачи либо простые (мало степеней свободы, достаточно найти импульс, энергию, момент и решить потом дифференциальное уравнение), либо вообще не решаются.
И очень мало какие задачи решаются разделением переменных по методу Якоби.
Сейчас, конечно, я эти вещи знаю.

Математическая логика вообще прошла мимо.

-- Ср ноя 03, 2010 16:40:28 --

Профессор Снэйп в сообщении #363008 писал(а):
А ещё так и не понял практически ничего про ряды Фурье.

Ряды Фурье - это скорее не матан, а методы решения линейных уравнений математической физики.
Синусы и косинусы - собственные функции оператора Лапласа, они образуют ортогональный базис в пространстве функций.
Сам Фурье занимался теплопроводностью.

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 17:02 
Аватара пользователя


23/11/09
1607
Цитата:
Я знаю, что ничего не знаю - Сократ (Демокрит?)
Это своеобразная попытка сформулировать принцип познавательной скромности. Его можно наглядно представить следующим образом: вообразим, что все наше знание это внутренность шара, а незнание — внешность шара. Чем больше становится наше знание, тем больше становится площадь поверхности шара, а следовательно наше «соприкосновение» с незнанием.
/Из http://ru.wikipedia.org/wiki/ Я_знаю,_что_ничего_не_знаю/

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 17:46 
Админ форума
Аватара пользователя


20/01/09
1376
Здесь же все довольно очевидно: то, чем не приходится пользоваться, забывается. И наоборот, когда что-то нужно, то это осваиваешь, даже если во время учебы прошло мимо. Мне по делу пришлось (и приходится) осваивать многое из того, что я думал, мне никогда особо не понадобится, и поэтому я не сильно парился над тем, чтобы это как следует запомнить. А многое, что вроде как знал хорошо, уже основательно забыл. А главное, заранее трудно точно сказать, что в какую категорию попадет :-)

Реальная работа все расставляет по местам.

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 19:47 
Заслуженный участник


11/05/08
32166
Ales в сообщении #369537 писал(а):
Синусы и косинусы - собственные функции оператора Лапласа,

Ну уж прямо-таки так сразу и Лапласа.

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 20:00 
Заслуженный участник
Аватара пользователя


03/02/10
1928
Ales в сообщении #369537 писал(а):
Ряды Фурье - это скорее не матан, а методы решения линейных уравнений математической физики

вот он, взгляд прикладника!!!

А как же двойственность Понтрягина и весь гармонический анализ))

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 21:04 


02/10/10
376
а я всегда комплексовал из-за не понимания диффгеома группы гомологий, накрытия, теория Морса и т.п.

Вообще ,проблема мех-мата в том, что там нет post graduate курсов

-- Wed Nov 03, 2010 22:06:26 --

Prorab в сообщении #369549 писал(а):
Реальная работа все расставляет по местам.

+1

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение03.11.2010, 21:16 
Заслуженный участник
Аватара пользователя


03/02/10
1928
moscwicz в сообщении #369673 писал(а):
Вообще ,проблема мех-мата в том, что там нет post graduate курсов

но, насколько я знаю, можно в НМУ ходить на лекции... или нет?

 Профиль  
                  
 
 Re: Пробелы в образовании
Сообщение06.11.2010, 05:48 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Mitrius_Math в сообщении #369497 писал(а):
Профессор Снэйп, а Вам не приходилось читать курс математического анализа?

А Фихтенгольц это что?

Ales в сообщении #369537 писал(а):
Ряды Фурье - это скорее не матан, а методы решения линейных уравнений математической физики.
Синусы и косинусы - собственные функции оператора Лапласа, они образуют ортогональный базис в пространстве функций.
Сам Фурье занимался теплопроводностью.

Ха! Я когда ряды Фурье появились на третьем курсе в функане, тут же кое-что понял и жутко обрадовался. Синусы и косинусы на отрезке --- гильбертов базис в $L_2[\pi,\pi]$, доказывается несложно. Так что своими глазами воочию увидел, что да, каждая интегрируемая функция раскладывается в ряд из синусов и косинусов с точностью до множества меры ноль :?

Но ведь в матане как-то по другому было, без меры ноль. Что-то насчёт того, что то ли непрерывная, то ли кусочно непрерывная функция раскладывается в ряд Фурье с поточечной сходимостью (может быть, за исключением конечного числа точек, не помню). И вот в это-то утверждение я так и не въехал! То есть формулировку осилил, а доказательство так и не смогло проникнуть в мозг... А я ведь недоверчивый, ни одно математическое утверждение до конца не признаю, пока доказательство не проверю :-)

Что касается теплопроводности, Лапласа и прочей самой жуткой галиматьи, собранной в одну неаппетитную кучу под обложкой "уравнения в частных производных". Короче, в курс урматов я не врубился, процентов 80 из того, что нам рассказывали, расплавилось и протекло мимо мозга. Дюже гадостная наука!

Но мне повезло. На экзамене попалась последняя тема курса, про обобщённые функции. Типа вводим пространство бесконечно гладких функций с компактным носителем, потом штрих от него, вкладываем в этот штрих пространство обычных функций, смотрим, как ведёт себя производная, обобщаем её на произвольные элементы штриха... Короче, функан чистой воды. А функан я любил. Как ни странно, считалось, что вопрос про обобщённые функции сложный, и меня тут же отпустили с пятёркой. А спросили бы что-нибудь про эллиптическо-параболический тип и всё, приплыли :-(

(Оффтоп)

Раз уж хвастаемся отсутствием знаниий, был у меня ещё один пробел в матанализе... Восполнил его на экзамене.

Разгильдяем я в студенческие годы был неимоверным, лекции-семинары практически не посещал. В третьем семестре на экзамен по матану пришёл с довольно пустой головой, немножко пожульничал, подменил билет, затем, когда вызвали, сделал вид, что уже отвечаю самому халявному экзаменатору... Короче, ушёл домой с пятёркой в зачётке и с чувством отсутствия всякой гордости. Задело за живое... На семинары я, естественно, ходить не начал, но обложился книгами, методичками, отксеренными конспектами и во всё досконально вник. На экзамен зашёл самым первым, взял наугад билет и, демонстативно не заглядывая в него, спросил лектора, можно ли отвечать без подготовки. Сказали, что можно. Минут через 10 все расселись и я присел рядом с ним рассказывать про дифформы и теорему о неподвижной точке...

Но не тут-то было! Первый вопрос, который мне задали, был такой: "Кто у Вас ведёт семинары?" А вот этого я, увы, не знал :oops: То есть в лицо вроде как-то знал, ну и кличку студенческую, а имя-отчество, увы, нет. Сижу, молчу. Он говорит: "Так. Вы на семинары ходили?" "Ну, ходил... иногда" И тут наша семинаристка заходит в аудиторию. Я обрадовался, наклонился к нему и говорю шёпотом: "Вот, она, вот эта женщина у нас семинары ведёт!" А он подслеповатый, ничерта не видит, и в голос: "Кто, где, какая женщина?" Потом разглядел и громко в голос на всю аудиторию: "Людмила Васильевна, он не знает, как вас зовут! Ха-ха-ха! Ну всё, пятёрки уже не будет, на четвёрку рассказывайте..."

Впрочем, пятёрку он всё-таки поставил.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 100 ]  На страницу 1, 2, 3, 4, 5 ... 7  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: drzewo


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group