2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение02.09.2010, 08:11 
Заслуженный участник


27/06/08
4062
Волгоград
maxal в сообщении #348993 писал(а):
VAL в сообщении #348990 писал(а):
Это общее соображение. Аккуратнее пока не доказывал.

С удовольствием посмотрю на доказательство. (что-то мне подсказывает, что тут отнюдь не всё так просто)
Если удаляется одно слагаемое, то требуемое неравенство доказывается в одну строчку.
А дальше по индукции :)

 Профиль  
                  
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение03.09.2010, 00:15 
Заслуженный участник
Аватара пользователя


09/02/09
2089
Минск, Беларусь
VAL в сообщении #348987 писал(а):
Любое нетривиальное решение с попарно различными (натуральными) числами должно получаться из тривиального $(1+2+\cdots+n)^2=1^3+2^3+\cdots+n^3$ выбрасыванием нескольких слагаемых, но не последнего. Но при этом левая часть всегда будет меньше правой.
Пусть мы выбросили очередное слагаемое $k$. Тогда левая часть $l^2$ уменьшается на $2kl-k^2$. Для того, чтобы правая часть уменьшилась на меньшую величину, необходимо $k^2+k-2l < 0$, а это возможно лишь при $k < \sqrt{2l}-\frac12$, так что индукция не прокатит.

 Профиль  
                  
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение03.09.2010, 06:14 
Модератор
Аватара пользователя


11/01/06
5702
Вроде придумал доказательство.

Лемма. Для натуральных чисел $a,b$, $a+1 < b-1$, справедливо неравенство:
$$(a+1)^3 + (b-1)^3  < a^3 + b^3.$$
Доказательство очевидно.

Предположим, что у нас есть решение
$$(\star)\qquad\qquad\left(\sum_{k=1}^n a_k\right)^2 = \sum_{k=1}^n a_k^3,$$
в котором $a_1<a_2<\dots<a_n$ является натуральными. Если в отрезке $[a_1, a_n]$ имеется две "дырки", то есть, два натуральных числа $a_1<x<y<a_n$, которые не являются элементами множества $\{ a_k \}$, то беря ближайший к $x$ слева элемент $a_i$ и ближайший к $y$ справа элемент $a_j$, заключаем, что $a_i+1 < a_j -1$ также являются дырками. Увеличивая $a_i$ на 1 и уменьшая $a_j$ на 1, мы не изменяем сумму $\sum a_k$, но уменьшаем сумму $\sum_k a_k^3$ (по лемме), причём все $a_k$ по-прежнему являются попарно различными натуральными числами.

Будем осуществлять подобные операции, покуда у нас имеются две дырки. Заметим, что величина "разброса" $\sum_{k<k'} (a_{k'}-a_k)$ при каждой такой операции уменьшается как мининимум на 2. Поэтому рано или позно мы придем к ситуации с максимум одной дыркой и неравенством
$$\left(\sum_{k=1}^n a_k\right)^2 \geq \sum_{k=1}^n a_k^3,$$
причем равенство имеется только в том случае, когда набор $a_1,\dots,a_n$ - исходный.

Если дырок нет, то $a_k = m+k$ для всех $k=1,2,\dots,n$ и некоторого $m\geq 0$. Тогда для $v=T_m=\sum_{i=1}^m i$ и $u= T_{m+n}$ имеем
$$\left(\sum_{k=1}^n a_k\right)^2 =  (u - v)^2 \geq u^2 - v^2 = \sum_{k=1}^n a_k^3.$$
Сокращая на $u-v$, получаем $u-v\geq u+v$ и, следовательно, $v=m=0$. В этом случае $a_k=k$ представляют наш исходный набор.

Если дырка одна, то аналогично для $u=T_{m+n+1}$, $v=T_m$ и некоторой дырки $s$, $m+2\leq s\leq m+n$, имеем:
$$(u - v-s)^2 \geq u^2 - v^2-s^3$$
или
$$s^3 + s^2 - 2(u-v)s - 2v(u-v) \geq 0$$
Найдем максимум левой части как функции от $s\in [m+2,m+n]$. Производная равна $3s^2 + 2s - 2(u-v)$, и её корнями являются $s=\frac{-1\pm \sqrt{1+6(u-v)}}3$. Так как меньший корень (соответствующий локальному максимуму) отрицательный, то максимум в отрезке $[m+2,m+n]$ достигается на одном из его концов. Поэтому должно выполняться хотя бы одно из неравенств:
$$(m+2)^3 + (m+2)^2 - 2(u-v)(m+2) - 2v(u-v) \geq 0$$
или
$$(m+n)^3 + (m+n)^2 - 2(u-v)(m+n) - 2v(u-v) \geq 0.$$
Первое неравенство равносильно:
$$(3 m^2 - \frac{9}{2} m^2 n) + (9m-\frac{17}2 m n) + (8-6n) - \frac{3}{2}mn^2 - 2n^2 - m^3 n - \frac{1}{2} m^2 n^2\geq 0$$
но, как нетрудно видеть, все скобки и остальные слагаемые в нём отрицательны (учитывая $n\geq 2$).
Второе неравенство и того проще:
$$-\frac{3}2 m^2 n - \frac{1}{2} m n^2 - 3m^2 - \frac{9}2 m n - 2n^2 - 3m- 2n-m^3n - \frac{1}2 m^2 n^2\geq 0$$
в нем все слагаемые отрицательны, и поэтому выполняться оно не может.

Итак, решением $(\star)$, где все натуральные числа $a_k$ различны, единственно и является набором первых $n$ натуральных чисел.

 Профиль  
                  
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение03.09.2010, 11:49 
Заслуженный участник


27/06/08
4062
Волгоград
maxal в сообщении #349288 писал(а):
Вроде придумал доказательство.
Ну вот, я же говорил: "Очевидно!" :D

 Профиль  
                  
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение03.09.2010, 19:16 


23/01/07
3497
Новосибирск
Наиболее очевидным этот факт становится, если использовать графическую интерпретацию, которую я уже ранее предлагал в одной из тем.

Коротко напомню ее суть:

Рисуем окружности "горкой", как они обычно изображаются для отображения треугольных чисел.
Соединяем центры всех соседних окружностей.
Получили равносторонний треугольник, состоящий из маленьких.
Отмечаем 1-й ряд сверху - это $1^3$.
Затем отмечаем следующие 2 ряда - это $2^3$ маленьких треугольников.
Следующие 3 ряда дают $3^3$
и т.д.

Рассматриваемый ныне вопрос на этой графической интерпретации формулируется следующим образом:
"Где больше маленьких треугольников - в $k$ рядах, находящихся в треугольнике и соответствующих $k^3$,
или в $k$ рядах, находящихся в основании большого треугольника?"

 Профиль  
                  
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение07.09.2010, 20:10 
Модератор
Аватара пользователя


11/01/06
5702
A158649(14) = 69459

Интуиция подсказывает, что вычислять элементы этой последовательности можно гораздо быстрее чем тупым перебором, но пока что-то не получается добиться существенного ускорения.

 Профиль  
                  
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение19.05.2015, 18:29 
Модератор
Аватара пользователя


11/01/06
5702
maxal в сообщении #349288 писал(а):
Предположим, что у нас есть решение
$$(\star)\qquad\qquad\left(\sum_{k=1}^n a_k\right)^2 = \sum_{k=1}^n a_k^3,$$
в котором $a_1<a_2<\dots<a_n$ является натуральными.

...

Итак, решением $(\star)$, где все натуральные числа $a_k$ различны, единственно и является набором первых $n$ натуральных чисел.


Я закинул эту задачу в Crux Mathematicorum, и там некто M. Bataille построил такое разложение:
$$\sum_{k=1}^n a_k^3 - \left(\sum_{k=1}^n a_k\right)^2 = \sum_{k=1}^n a_k \sum_{j=1}^k (a_j + a_{j-1})(a_j - a_{j-1} -1),$$
где доопределено $a_0=0$. Отсюда моментально следует, что для $a_0=0<a_1<a_2<\dots<a_n$ это выражение неотрицательно и равно нулю только если равны нулю все $a_j - a_{j-1} -1$, то есть, $a_j=a_{j-1}+1$ для всех $j$. Значит, $a_j=j$, ч.т.д.

Вот такое по-настоящему олимпиадное решение в две строчки!

 Профиль  
                  
 
 Re: Квадрат суммы чисел равен сумме кубов чисел
Сообщение20.05.2015, 08:17 


18/04/15
38
Droog_Andrey в сообщении #240718 писал(а):
Интересно было бы найти нетривиальное решение, где все $a_k$ различны.

Если положить, что $ a_{k} $ - разные натуральные, то методом матиндукции доказывается неравенство $ \sum\limits_{k=1}^{n}a_{k}^3\geq\left( \sum\limits_{k=1}^{n}a_{k} \right)^2 $, причем равенство достигается лишь в том случае, когда $ a_{k}=k, 1\leq k\leq n $. Поэтому для поиска нетривиальных решений разумно сделать допущение, что не все числа разные.

-- 20.05.2015, 08:26 --

Прошу прощения, не прочитал последние сообщения, думал, что это еще не доказано.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 38 ]  На страницу Пред.  1, 2, 3

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Bing [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group