12d3Вот магический квадрат порядка 8 из произвольных смитов с магической константой
5861:
Код:
454 121 728 1219 517 535 1633 654
1581 438 265 852 666 1086 58 915
588 274 166 1111 1449 645 346 1282
913 1507 778 706 355 378 648 576
94 319 1626 825 729 1376 202 690
526 1284 391 762 895 958 562 483
27 1255 985 4 1165 22 1776 627
1678 663 922 382 85 861 636 634
Пропущены две константы:
5856 и
5858.
Далее с ходу построился квадрат с константой 5866, пропущена ещё константа 5863.
Да, я тоже пытаюсь с той же стороны действовать: настроить как можно больше ПМК в надежде, что какой-нибудь превратится в магический.
Вот даже выложила здесь пакет программ для построения ПМК
Как я уже писала, самое сложное в этом процессе - генерация набора из 8 строк. Иногда такой набор генерируется с первой попытки, но чаще его приходится ждать минут 15-20.
Может быть, вы придумаете более эффективный способ генерации наборов по 8 строк? Я пыталась это сделать закономерным способом (как для наборов из 7 строк), то есть опираясь на упорядоченные восьмёрки, программку написала вчера, но всё равно ещё дольше получается, потому что 8 переменных и 64 числа в массиве, циклы выполняются долго. Так что опять сейчас буду крутить случайную генерацию наборов и построение из них ПМК. Ещё не из всякого набора ПМК получается. Тут тоже нужна более эффективная программа, чтобы из набора строила ПМК наверняка, если такое вообще возможно. Я вот сделала прогон той же программы для отражённых наборов и ещё несколько ПМК получила. Всего у меня на сегодня 17 ПМК. Все они оригинальные, то есть получающиеся друг из друга перестановкой строк я отбрасываю, такие неинтересны, потому что дальше при превращении в магический квадрат всё равно строки будут переставляться.
ice00вы не совсем поняли, о каких наборах из 7 упорядоченных семёрок я спрашивала. Вот о таких:
Код:
4 22 438 483 825 861 1086
58 85 627 645 690 762 852
27 94 265 648 778 922 985
121 166 274 576 729 895 958
346 378 454 535 634 666 706
202 319 517 636 654 663 728
355 382 391 526 562 588 915
Все упорядоченные семёрки я сама получила (они выложены на моём сайте, здесь есть ссылка). А затем надо было составить из этих упорядоченных семёрок набор из 7 штук, так чтобы все числа в наборе были различны.
Показанный набор вчера привёл 12d3. Он сообщает, что таких наборов получается много, более 10000.
Однако теперь задача составления таких наборов уже не актуальна, потому что 12d3 доказал, что магический квадрат с константой 3719 построить невозможно.
Теперь нужны аналогичные наборы из упорядоченных восьмёрок с константой 5856, много-много