12d3Вот магический квадрат порядка 8 из произвольных смитов с магической константой 
5861:
Код:
454  121  728 1219  517  535 1633  654
1581  438  265  852  666 1086   58  915
588  274  166 1111 1449  645  346 1282
913 1507  778  706  355  378  648  576
94  319 1626  825  729 1376  202  690
526 1284  391  762  895  958  562  483
27 1255  985    4 1165   22 1776  627
1678  663  922  382   85  861  636  634
Пропущены две константы: 
5856 и 
5858.
Далее с ходу построился квадрат с константой 5866, пропущена ещё константа 5863.
Да, я тоже пытаюсь с той же стороны действовать: настроить как можно больше ПМК в надежде, что какой-нибудь превратится в магический.
Вот даже выложила здесь пакет программ для построения ПМК  
 
 Как я уже писала, самое сложное в этом процессе - генерация набора из 8 строк. Иногда такой набор генерируется с первой попытки, но чаще его приходится ждать минут 15-20.
Может быть, вы придумаете более эффективный способ генерации наборов по 8 строк? Я пыталась это сделать закономерным способом (как для наборов из 7 строк), то есть опираясь на упорядоченные восьмёрки, программку написала вчера, но всё равно ещё дольше получается, потому что 8 переменных и 64 числа в массиве, циклы выполняются долго. Так что опять сейчас буду крутить случайную генерацию наборов и построение из них ПМК. Ещё не из всякого набора ПМК получается. Тут тоже нужна более эффективная программа, чтобы из набора строила ПМК наверняка, если такое вообще возможно. Я вот сделала прогон той же программы для отражённых наборов и ещё несколько ПМК получила. Всего у меня на сегодня 17 ПМК. Все они оригинальные, то есть получающиеся друг из друга перестановкой строк я отбрасываю, такие неинтересны, потому что дальше при превращении в магический квадрат всё равно строки будут переставляться.
ice00вы не совсем поняли, о каких наборах из 7 упорядоченных семёрок я спрашивала. Вот о таких:
Код:
4 22 438 483 825 861 1086 
58 85 627 645 690 762 852 
27 94 265 648 778 922 985 
121 166 274 576 729 895 958 
346 378 454 535 634 666 706 
202 319 517 636 654 663 728 
355 382 391 526 562 588 915
Все упорядоченные семёрки я сама получила (они выложены на моём сайте, здесь есть ссылка). А затем надо было составить из этих упорядоченных семёрок набор из 7 штук, так чтобы все числа в наборе были различны.
Показанный набор вчера привёл 12d3. Он сообщает, что таких наборов получается много, более 10000.
Однако теперь задача составления таких наборов уже не актуальна, потому что 12d3 доказал, что магический квадрат с константой 3719 построить невозможно.
Теперь нужны аналогичные наборы из упорядоченных восьмёрок с константой 5856, много-много  
