...Основная единица

является корнем уравнения


является корнем уравнения
мнимая единица является корнем уравнения
Из этих уравнений можем заключить, что МЕ являются корнями уравнений
(целое

):

Yarkin, Вы опять держите нас за лохов. Из приведённых Вами уравнений, даже не проверяя их, доверившись, что всё написанное в первой части импликации --- правда, можно лишь заключить, что "мнимая единица является корнем уравнения

". Ровно как у Вас написано. Какого чёрта мы должны вдруг допустить сюда какое-то

, какое-то

???
После этого Вы сразу пишете, что "МЕ явля
Ются"... (выделено мной). Т.е. как-то втихаря (а вдруг пригодится?) делаете множественное число, типа их, мнимых единиц, много...
Вообще-то это сильно напоминает хамство (если не троллинг и не тончайшее актёрство). Хамство --- так разговаривать с людьми.
Никаких гипотез о хамстве не последовало бы, если бы Вы написали, например, так:
Цитата:
Подскажите, не можем ли мы заключить из этих уравнений, что МЕ является корнем уравнений
(целое

):

(и остальных уравнений). Впрочем, хамство --- далеко не единственная гипотеза. Детали неизвестны, а этот вариант типа самый простой. Возможны и другие варианты, например, на букву
глу ("
глубокое непонимание ... чего-то там", до конца выписывать лень). Возможны и какие-то третьи варианты, Вам лучше известные. Но тогда уж постарайтесь писать так, чтобы это не выглядело откровенным пренебрежением к думающему читателю.
Подобным же образом Вы ведёте себя, например, и здесь:
Этот, частный вид его, и оказался
бы для нас действительным числом, где

- модуль,

- его аргумент.
(Выделено мной, АКМ). Что здесь делает это "бы"? Где логически необходимое "если"?
Это тригонометрическая форма записи действительного (точнее рационального) числа, которая должна совпадать с алгебраической формой записи.
(Выделено мной, АКМ) Почему --- "должна" (и в каком смысле "совпадать")??? Да потому, вероятно, что Вы просматривали много книг по математике (Тригонометрию Новосёлова, если не ошибаюсь), и там это слово часто фигурировало, и оно придаёт некую научность Вашим дико безграмотным текстам.
Yarkin, это псевдонаучность. Типа как если меня посадить за рояль, и выдавать извергаемое за музыку.
Таким образом, действительное число всегда имеет направляющий косинус и период.
Каким "таким" образом??? Что есть "период числа"? Каков период числа 5???
Я буду очень признателен, если Вы сможете проигнорировать это сообщение, и не отвечать на него.
Я вот не смог удержаться, и снова встрял...
Ваше Дело, конечно, важнее этих придирок.