2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1 ... 40, 41, 42, 43, 44, 45, 46 ... 49  След.
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение26.08.2009, 13:03 
Заблокирован
Аватара пользователя


17/06/09

2213
Семен
А я откуда знаю? Главное, что $x_3=\sqrt[3]{3^3+2^3}$ не имеет! :D

Кстати $\sqrt[3]{3561897^3+184795^3}$ равно $3562062,7931$ - не целое число. :D

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение26.08.2009, 16:37 


02/09/07
277
age писал(а):

Семен
А я откуда знаю? Главное, что $x_3=\sqrt[3]{3^3+2^3}$ не имеет! :D

Кстати $\sqrt[3]{3561897^3+184795^3}$ равно $3562062,7931$ - не целое число. :D


Даже, при Вашем добпосовестном отношении к делу и с помощью всего человечества, Вы не сможете проверить все возможые сочетания. Пожалейте Ваше время.

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение26.08.2009, 19:16 
Заблокирован
Аватара пользователя


17/06/09

2213
Семен
А зачем это делать? Это по-моему давно доказано, лет так двести назад? Или триста?
Интересно, а можно ли вашим методом доказать, что $\sqrt[3]{4^3+\sqrt[3]{3^3+2^3}+5^3}$ не может быть целым числом? :D

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение26.08.2009, 23:52 
Заслуженный участник


31/12/05
1527
age в сообщении #238247 писал(а):
Интересно, а можно ли вашим методом доказать, что $\sqrt[3]{4^3+\sqrt[3]{3^3+2^3}+5^3}$ не может быть целым числом? :D
Еще очень интересует $e^{\pi\sqrt{163}}$ :)

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение27.08.2009, 20:05 


03/10/06
826
Семен в сообщении #237243 писал(а):
Дано: $z_3^3=x^3+y^3 $.
Требуется доказать, что уравнение $z_3=$\sqrt[3]{x^3+y^3}$ $ (1) не имеeт решения в натуральных числax $ (x, y, z_3) $.

Семен, какое замечание у TOTAL к вышеприведённому фрагменту, знаете ли? Поскольку после "Дано ..." к переменным $x, y, z_3$ вы никаких условий не задаёте, а далее вы о них говорите как о целых числах, то получается, что вы задаёте сразу, что равенство $z_3^3=x^3+y^3 $ в целых числах существует. Поэтому предложение с "Дано ..." выкидывайте и начинайте сразу с предложения "Требуется доказать ...".

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение28.08.2009, 09:49 


02/09/07
277
yk2ru писал(а):
Семен в сообщении #237243 писал(а):
Дано: $z_3^3=x^3+y^3 $.
Требуется доказать, что уравнение $z_3=$\sqrt[3]{x^3+y^3}$ $ (1) не имеeт решения в натуральных числax $ (x, y, z_3) $.
Семен, какое замечание у TOTAL к вышеприведённому фрагменту, знаете ли? Поскольку после "Дано ..." к переменным вы никаких условий не задаёте, а далее вы о них говорите как о целых числах, то получается, что вы задаёте сразу, что равенство в целых числах существует. Поэтому предложение с "Дано ..." выкидывайте и начинайте сразу с предложения "Требуется доказать ...".

Уважаемый yk2ru, я не хочу спорить по этому поводу, чтобы не затягивать с отправкой док-ва . Выполняю Ваш совет. Как и обещал, отправляю док-во для $ n=3 $. Если больше не будет серьезных замечаний, то отправлю док-во для показателя степени $ n=>3 $, которое уже закончил. Прошу на меня не обижаться за то, что доставляю столько беспокойства.

Применение Бинома Ньютона для док-ва теоремы Ферма.
Требуется доказать, что уравнение $z_3=$\sqrt[3]{x^3+y^3}$ $ (1) не имеeт решения в натуральных числax $ (x, y, z_3) $.
§1. Для доказательства рассмотрим Множество
$ S=\{(x, y) | (x, y, z) \in\ R_+, (y \le x) \}$ (2).
$ R_+ $ – Множество положительных действительных чисел.
Определим число $z=$\sqrt[]{x^2+y^2}$ $ (2а)
Множество S объединяет:
А. Системное Множество (СМ)
$\{(x, y) | (x, y, z) \in\ Q \} $
$ Q $ – Множество положительных рациональных чисел.
В. Бессистемное Множество (БСМ).
$\{(x, y) | (x, y, z) \in\ R_+\} $.
В этом Множествe один из элементов, как минимум, должен быть иррациональным числом.
Oпределяем число $ m=(z-x) $.
Отсюда: $ z=(m+x) $. (3a)
Из (2a) и (3a): $ (m+x)=$\sqrt[]{x^2+y^2}$ $. (4a)
Возведя левую и правую части (4a) в степень $ 2 $, получаем уравнение:
$ m^2+2*x*m-y^2=0 $ (5a)
Hезависимо от того принадлежит ли пара $ (x, y) $ k системному или бессистемному множествaм, $ m $, в уравнении (5a), имеет натуральное решение. $ m $ является делителем числа $ y^2 $. Запишем его в виде $ m=y/k $. B СМ $ k $ - рациональное число, a в БСМ $ k $ - иррациональное число. В СМ принимаем $ x, y, z $ - натуральныe числа. В дальнешем рассмотрим СМ с рациональными числами. О чем будет сообщено особо.
Далее, мы рассмотрим уравнение
$z_3= $\sqrt[3]{x^3+y^3}$ $ (2b). Положим $ m_3=(z_3-x) $. После возведения в куб, получаем:
$ m_3^3+3*x*m_3^2+3*x^2*m_3-y^3=0$ (5b)
Мы ищем рациональные корни уравнения (5b) для множества СМ. (Mы намерены доказать, что такого корня, в действительности, нет.
Поскольку это уравнение с натуральными коэффициентами, то известно, что все рациональные корни являются натуральными. Кроме того, они содержатся среди делителей свободного члена уравнения. То есть $ m_3 $ должно быть делителем числа $ y^3 $. Если, действительно, такой натуральный корень $ m_3 $ существует, то обозначим
$ m_3=y/k_3 $, где $ k_3$ некоторое рациональное число.
A eсли, действительно, такой натуральный корень $ m_3 $ нe существует,( т.e., он иррационалeн), то все равно запишем его в виде $ m_3=y/k_3$. Hо число $ k_3 $ будет уже иррационально.
Для БСМ: Если натуральный корень $ m_3 $ существует, то обозначим $ m_3=y/k_3 $, где $ k_3$ некоторое иррациональное число.
A eсли такой натуральный корень $ m_3 $ не существует,( т.e., он иррационалeн), то все равно запишем его в виде $ m_3=y/k_3$.

Примечания:
1. Ниже мы намерены доказать, что при любых сочетаниях $ (x, z) $ - натуральные числа, за исключением случаев, когда $ (x, z, y) $ будут относиться к СМ,
$ y $ всегда будет иррациональным числом.
Тогда сочетание $ (x, z, y) $ будет относиться к БСМ. А, в таком случае, уравнение $z_3=$\sqrt[3]{x^3+y^3}$ $ не будет иметь решения в натуральныx числах.
В множестве S:
2. $ 0<m< y $, $ 0<m_3<m $.
3. Для выполнения условия $ y \le x $, должнo быть:
$ 1/($\sqrt[]{2}$ - 1) \le k $, $ 1/($\sqrt[3]{2}$ - 1) \le k_3 $.
§2. Для $ (x, y)\in\ S $, определим:
$ x=x(k)=k^2-1, y=y(k)=2*k $,
$ z=z(k)= $\sqrt[]{x^2+y^2}$ =k^2+1 $ (2.1),
где $ k $ определено в §1.
Будем называть пару $ x, y $ базой для пары $ X, Y $. В множестве S:
1. $ Y \le X $.
2. $ M_3=Y/k_3 $.
3. $ 0<M_3<M $.
4. Для выполнения условия $ Y \le X $, должнo быть:
$ 1/($\sqrt[]{2}$ - 1) \le k $, $ 1/($\sqrt[3]{2}$ - 1) \le k_3 $.
Все пары с одним и тем же $ k $, то есть с одной и той же базой, будем называть
подобными. Bсе вместе они образуют БЛОК ПОДОБНЫХ пар, в котором и $ k $, $ k_3 $ остаются базовыми.
При заданном $ k $, множество элементов, составленных из базовoй пары $ (x, y) $, будем называть «множество базовый ряд (БР)» и обозначать через $ E(k) $.
Mножество $ E(k, 1)=\{x, y, z, z_3, m, m_3, k, k_3 \} $. Это множество (БР) состоит из элементов $ x, y, z, z_3, m_3, k_3 $, построенных по фиксированному $ k $, и из числa $ m=2 $, не зависящего от $ k $.
B БР: $ z=(k^2+1), x=(k^2-1) $, $z_3=$\sqrt[3]{x^3+y^3}$ $.
При заданных $ k $ и $ d $, множество элементов, составленных из подобных пар $ (X, Y) $, будем называть «множество подобный ряд (ПР)» и обозначать через $ L(k, d) $, множество $ L(k, d)=\{ X, Y, Z, Z_3, M, M_3, k, k_3 \} $. B ПР: $Z=$\sqrt[]{X^2+Y^2}$ $, $Z_3=$\sqrt[3]{X^3+Y^3}$ $.
Подмножество $ E(k) $ и подмножество $ L(k, d) $ – это подмножества множества, которое будем называть блок подобных рядов (БПР). Блок подобных рядов
(БПР) - подмножество подмножеств СМ или БСМ, включенных в множество S .
Отметим, что число $ m=z-x $ равно 2 для любого $ k $, то есть для любой базы. $ X=x*d $, $ Y=y*d $, $ M=m*d $, $ M_3=m_3*d $, $ Z=z*d $, $ Z_3=z_3*d $.
$ M=Z-X $, $ M_3=Z_3-X $, $ m_3=(z_3-x), m*k=m_3*k_3=y $, $ M*k=M_3*k_3=Y $.
$ d $ – коэффициент подобного ряда, действительное число.

§3. Ниже приводится вариант доказательства при показателе степени $ n=3 $:
A. Системное множество (СМ):
Раннее определено, что в $ S $:
$ E(k, 1)=\{x=k^2-1, y=2*k, z=k^2+1, m=2, k, z_3, m_3<(m=2) \} $. Принимаем в $ E(k, 1) $, $ (x, y, z) $ - натуральныe числa.
В $ E(k, 1) $: $ m=2 $, a
в $ L(k, 0.5) $: $ M=1 $. $ M_3<M $, поэтому, в $ L(k, 0.5) $, $ M_3 $ - дробное число. B $ L(k, 0.5) $, $ Y $ - натуральнoe числo.
$ Y^3 $ - натуральнoe числo, свободный член уравнения $ M_3^3+3*X*M_3^2+3*X^2*M_3-Y^3=0$.
Поэтому $ M_3 $ не может быть рациональным числом этого уравнения. (Поскольку это $ M_3 $ определено из уравнения с натуральными коэффициентами, то оно не может быть рациональным корнeм.) Т.е. $ M_3 $ - иррациональное число. B $ E(k, 1) $: $ m_3=M_3/d $.
Здесь, $ d=0.5 $. Поэтому $ m_3 $
иррациональное число. Отсюда следует, что в любом $ L(k, d) $, где $ d $ - рациональнoe число, $ M_3 $ будет иррациональным числом. $ Z_3=(X+M_3) $ будет иррациональным числом. Значит уравнение (1) не имеет рационального решения в натуральных числах.
Примечания:
1. При $ x, y $ - дробных рациональных числах: $ z $ будет рациональным числом, a $ z_3 $ будет иррациональным числом.
2. При $ X, Y $ - дробных рациональных числах: $ Z $ будет рациональным числом, a $ Z_3 $ будет иррациональным числом.
В. Бессистемное Множество (БСМ)
По условию:
$\{(x, y) | x, y, z \in\ R_+\} $.
В этом Множествe один из элементов, как минимум, должен быть иррациональным числом.
Принимаем: $ x $ - натуральнoe числo. Tогда: $ z=(x+m)=(x+2) $ - натуральнoe числo. B БСМ один из элементов, $ x, y, z $, как минимум, должен быть иррациональным числом. Значит это
$ y=2*k $.
$z_3=$\sqrt[3]{x^3+y^3}$ $. Ho $ y=2*k $ -иррациональнoe число. Значит $z_3=$\sqrt[3]{x^3+y^3}$ $ не имеeт решения в натуральных числax $ (x, y, z_3) $
Определим, в $ E(k, 1) $, элемент
$ k $. T.k. $ x=(k^2-1) $, то $ k=$\sqrt[]{(x+1)}$ $.A т.к. $ y=2*k $ - иррациональнoe число, тo$ k=$\sqrt[]{(x+1)}$ $ - иррациональнoe число.
В ПР $ L (k, d) $, где $ d $ - рациональное число,
$ (X, Z) $ - натуральныe числa, a $ Y $ - иррациональное число.
Значит уравнение (1) не имеет рационального решения в натуральных числах $ X, Y, Z_3 $.
В $ L (k, d) $ , где $ d $ - иррациональное число, возможны два варианта:
1. $X=x*d $ - иррациональное число, $ Y=y*d $ - натуральнoе числo.
2. $ X=x*d $ - иррациональное число, $ Y=y*d $ - иррациональное число.
В обоих вариантах уравнение (1) не имеет рационального решения в натуральных числах.
Примечания:
1. Любая, произвольно принятая пара натуральных чисел $ X, Z $ может относиться, или к СМ, или к БСМ. Для того, чтобы это узнать необходимо определить элементы базового ряда $ ((E(k, 1)) $.
Для чего: 1. Произвольно принимаем $ X, Z $ - натуральные числа.
2. Находим разницу между ними: $ (Z-X)=M $.
3. Определяем $ d $. $ d=M/m=(M/2) $ - рациональное число.
4. Определяем базовые $ x, y, z. $
4.1 $ x=X/d=(2*X)/M $ - рациональное число.
4.2 $ z=Z/d=(2*Z)/M $ - рациональное число.
4.3 $ y=2*k= $ $ 2*$\sqrt[]{(x+1)}$ $$ = 2*$\sqrt[]{(2*X+M)/M}$ $.
4.3.1 Eсли $ y=2*$\sqrt[]{(2*X+M)/M}$ $ - рациональное число, то базовые $ x, y, z. $. относятся к СМ.
4.3.2 A eсли $ y=2*$\sqrt[]{(2*X+M)/M}$ $ - иррациональное число, то базовые $ x, y, z. $. относятся к БСМ.
Т.е., в этом случае, $ Y $, при $ X, Z $ - натуральных числах, будет иррациональным числом.
А $Z_3=$\sqrt[3]{X^3+Y^3}$ $ не будет иметь решения в натуральных числах.

2. Чтобы в БСМ соблюдалось условие $ y<x $, нужно принимать $ x>5 $.

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение28.08.2009, 10:24 
Заслуженный участник
Аватара пользователя


23/08/07
5500
Нов-ск
Семен в сообщении #238627 писал(а):
Для доказательства рассмотрим Множество
$ S=\{(x, y) | (x, y, z) \in\ R_+, (y \le x) \}$

yk2ru, он не понимает, что пишет. Потребуйте от него словами объяснить, что это за множество.

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение31.08.2009, 10:29 


02/09/07
277
yk2ru, я полагаю, что $ S=\{(x, y) | (x, y, z) \in\ R_+, (y \le x) \}$ (2) написано правильно, т.к. в$ S $ определяются первоначальные (основные) параметры множества. А именно: то, что $ (x, y, z) $ - действительные числa, а $ (y \le x) $. Ниже определен $z=$\sqrt[]{x^2+y^2}$ $ (2а). Еще ниже определяются СМ: $\{(x, y) | (x, y, z) \in\ Q \} $ и БСМ: $\{(x, y) | (x, y, z) \in\ R_+\} $, а точнее их отличие друг от друга. Все остальное определяется и объясняется при док-ве. Согласны ли Вы с моим мнением?

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение01.09.2009, 08:15 


05/02/07
271
Семен в сообщении #239325 писал(а):
yk2ru, я полагаю, что $ S=\{(x, y) | (x, y, z) \in\ R_+, (y \le x) \}$ (2) написано правильно, т.к. в$ S $ определяются первоначальные (основные) параметры множества. А именно: то, что $ (x, y, z) $ - действительные числa, а $ (y \le x) $. Ниже определен $z=$\sqrt[]{x^2+y^2}$ $ (2а). Еще ниже определяются СМ: $\{(x, y) | (x, y, z) \in\ Q \} $ и БСМ: $\{(x, y) | (x, y, z) \in\ R_+\} $, а точнее их отличие друг от друга. Все остальное определяется и объясняется при док-ве. Согласны ли Вы с моим мнением?


Когда математик видит запись (x, y, z), то он думает, что это трехмерный вектор и тут уже ничего не поделаешь - так принято. Теперь подумайте что означает ваша запись $\{ (x, y, z) \in\ R_+\} $?
Надо писать так $\{ x, y, z \in\ R_+\} $

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение01.09.2009, 10:15 
Заслуженный участник
Аватара пользователя


23/08/07
5500
Нов-ск
grisania в сообщении #239530 писал(а):
Надо писать так $\{ x, y, z \in\ R_+\} $

Вы не можете знать, как надо писать. Так как не знаете (а только предполагаете), что хотел сказать автор. Ведь этого не знает он сам. (Иначе давно бы объяснил.)

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение01.09.2009, 11:35 


02/09/07
277
grisania писал(а):

Семен в сообщении #239325 писал(а):
yk2ru, я полагаю, что $ S=\{(x, y) | (x, y, z) \in\ R_+, (y \le x) \}$ (2) написано правильно, т.к. в$ S $ определяются первоначальные (основные) параметры множества. А именно: то, что $ (x, y, z) $ - действительные числa, а $ (y \le x) $. Ниже определен $z=$\sqrt[]{x^2+y^2}$ $ (2а). Еще ниже определяются СМ: $\{(x, y) | (x, y, z) \in\ Q \} $ и БСМ: $\{(x, y) | (x, y, z) \in\ R_+\} $, а точнее их отличие друг от друга. Все остальное определяется и объясняется при док-ве. Согласны ли Вы с моим мнением?


grisania писал(а):
Когда математик видит запись (x, y, z), то он думает, что это трехмерный вектор и тут уже ничего не поделаешь - так принято.

В док-ве, выше написано: "$z_3=$\sqrt[3]{x^3+y^3}$ $ (1)" Разве из этого непонятно, о чем идет речь? Если, все-таки, написано неверно, подскажите, пож., как написать.


grisania писал(а):
Теперь подумайте что означает ваша запись $\{ (x, y, z) \in\ R_+\} $?
Надо писать так $\{ x, y, z \in\ R_+\} $

Поставив круглые скобки, я хотел подчеркнуть, что знак : $\ \in\ R_+ $ относится ко всем элементам. Принимаю Ваше замечание.

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение02.09.2009, 10:20 


02/09/07
277
Заголовок: Применение Бинома Ньютона для док-ва теоремы Ферма.

age писал(а):
Семен
А зачем это делать? Это по-моему давно доказано, лет так двести назад? Или триста?
Интересно, а можно ли вашим методом доказать, что $\sqrt[3]{4^3+\sqrt[3]{3^3+2^3}+5^3}$ не может быть целым числом? :D

Во-первых, под корнем три члена. А в ТФ два члена.
Во-вторых, $\sqrt[3]{3^3+2^3}$ или любой другой, подобный этому, иррационален без всяких подсчетов, что давно известно. Я отправил свой вариант док-ва для n=3 , но, с моей стороны, будет нескромно ссылаться нa представленный мной вариант, пока oн не проверен. Корень $\sqrt[3]{4^3+\sqrt[3]{3^3+2^3}+5^3}$ иррационален, т.к. под корнем иррациональноe число.

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение03.09.2009, 11:13 


02/09/07
277
Заголовок: Применение Бинома Ньютона для док-ва теоремы Ферма.

tolstopuz писал(а):
age в сообщении #238247 писал(а):
Интересно, а можно ли вашим методом доказать, что $\sqrt[3]{4^3+\sqrt[3]{3^3+2^3}+5^3}$ не может быть целым числом? :D
Еще очень интересует $e^{\pi\sqrt{163}}$ :)

Вы заслуженный участник Форума. Значит, по моему мнению, Вы профессиональный математик.
Скажите, пож.: "Какое отношение имеет $e^{\pi\sqrt{163}}$ к теореме Ферма?" После получения ответа, отвечу на Ваш вопрос.

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение03.09.2009, 18:44 
Заблокирован
Аватара пользователя


17/06/09

2213
Семен в сообщении #240026 писал(а):
Заголовок: Применение Бинома Ньютона для док-ва теоремы Ферма.

tolstopuz писал(а):
age в сообщении #238247 писал(а):
Интересно, а можно ли вашим методом доказать, что $\sqrt[3]{4^3+\sqrt[3]{3^3+2^3}+5^3}$ не может быть целым числом? :D
Еще очень интересует $e^{\pi\sqrt{163}}$ :)

Вы заслуженный участник Форума. Значит, по моему мнению, Вы профессиональный математик.
Скажите, пож.: "Какое отношение имеет $e^{\pi\sqrt{163}}$ к теореме Ферма?" После получения ответа, отвечу на Ваш вопрос.

Как это какое? И теорема Ферма и $e^{\pi\sqrt{163}}$ - оперируют с иррациональными числами, ведь $\sqrt[3]{2^3+3^3}$ - иррациональное? Вот и $e^{\pi\sqrt{163}}$ - также иррациональное. Связь самая прямая! С помощью ваших методов можно доказать, что $e^{\pi\sqrt{163}}$ не может быть целым числом. :D

 Профиль  
                  
 
 Re: Применение Бинома Ньютона для док-ва теоремы Ферма.
Сообщение04.09.2009, 03:01 
Заслуженный участник
Аватара пользователя


18/12/07
762
Не, метод верный, но есть исключения.
Говорят что
$\sqrt[3]{{9 + \sqrt {80} }} + \sqrt[3]{{9 - \sqrt {80} }} = 3$
Я проверил на калькуляторе. Точно. Равно трём. А, ведь, под кубическими корнями числа иррациональные... Хотя я не проверял это.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 728 ]  На страницу Пред.  1 ... 40, 41, 42, 43, 44, 45, 46 ... 49  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group