Droog_Andrey писал(а):
epros писал(а):
Что такое "действительное" существование причинности?
Возможность соответствующего преобразования информации. В нашем случае это доказуемость
Т.е. если в "правильной" теории из предположения
выводимо
, то можно считать, что
"действительно" является причиной
?
Droog_Andrey писал(а):
epros писал(а):
Если Вы помните, речь была об истинном высказывании, из которого следуют все истинные высказывания.
Импликация всех истинных высказываний действительно верна. Но это вовсе не означает, что мы сможем, опираясь лишь на простоту числа 2, доказать все истинные утверждения, верно ведь?
Что значит "импликация всех истинных высказываний"? В Вашей аксиоматике есть закон
, где
- некое высказывание? Если есть, то "означает": Вы можете из простоты числа 2 доказать данное высказывание. Если такой закон Вам неизвестен, то не можете.
маткиб писал(а):
Это ещё зачем?
Чтобы было, о чём говорить.
Не вижу смысла говорить о моих знаниях (или о пробелах в них, коих, конечно же, немало).
маткиб писал(а):
Вполне очевидно, что если существование этого "настоящего" решения доказано неконстуктивными методами, то реально решения в Вашем распоряжении нет, а стало быть и разности этой нет.
Не очевидно.
Если есть возможность получить
конкретное решение, то это можно сделать конструктивными методами. Т.е. если Вы продемонстрируете конкретное решение, про которое конструктивисты до сих пор не знали, то они будут вынуждены расширить свои методы. Такова уж суть конструктивного подхода. Вот только новые конкретные решения как правило не предъявляются, а вместо этого мы получаем заявления об их "существовании".
маткиб писал(а):
То, что даже если и есть принципиально неразрешимые утверждения, то нельзя называть такими те, которые независимы с какой-то конкретной аксиоматикой.
А я не называю и никогда не называл. Например, проблема существования максимального совершенного числа: Я не знаю, разрешима ли она в аксиоматике Пеано. И я не знаю, расзрешима ли она в мета(1)-расширении аксиоматики Пеано. И я не знаю, разрешима ли она в мета(омега)-расширении аксиоматики Пеано. И есть ещё куча всяких "я не знаю" относительно этой проблемы. Имею я право
предположить, что эта проблема
никогда не будет решена в аксиоматике Пеано? А то, что она никогда не будет решена в мета(1)-расширении аксиоматики Пеано? А то, что она никогда не будет решена в мета(омега)-расширении аксиоматики Пеано?
Естественно, что в
какой-то аксиоматике эта проблема будет "решена". Для этого, например, достаточно просто добавить аксиому, что "максимальное совершенное число существует". И всё - идите, доказывайте, что получилось противоречие, а пока не доказали, мы будем так считать. Но совершенно не факт, что я
должен принять такую аксиоматику.
маткиб писал(а):
Т.е. каждой формуле в принципе можно сопоставить одно из 3 значений - "истинно", "ложно" и "неразрешимо"
А вот и нет, этого тоже недостаточно. Значение "неразрешимо" подразумевает, что мы способны
доказать, что данная проблема неразрешима, а это не всегда так. Т.е. нам придётся добавить ещё одно "логическое значение": "вопрос разрешимости неразрешим". На этот счёт есть теорема (классическая) о том, что значений истинности в конструктивной логике - счётная бесконечность.
маткиб писал(а):
...читающий формулу должен хотя бы приблизительно представлять, что это значит, и эта информация не содержится в самой формуле (формула - это строка символов, в ней кроме этих символов больше никакой информации нет). Например, если я говорю
то Вы должны понимать, что переменные под кванторами пробегают "строки из вертикальных палочек", "=" означает равно, а + означает "+", и этой информации в самой строке нет. Я не представляю, как можно формально объяснить человеку, что такое "+". Обычно человек понимает это с нескольких показанных примеров с яблоками или камушками (хотя гарантии понимания нет).
Конечно же это всё правильно: чтобы понимать "смысл" формулы, нужно привлечь знания, которых в самой формуле нет. Но речь была не об этом, а о том, что понятие "высказывания" определяется синтаксисом соответствующего языка. Причём это может быть сделано вполне формально. Например, приведённый Вами пример можно однозначно интерпретировать как высказывательную формулу без свободных переменных в языке логики первого порядка + арифметики. Это можно объяснить не только человеку, но даже компьютеру (написать программу распознавания).
маткиб писал(а):
Определял истинное высказывание, из которого следуют все истинные высказывания.
А оно есть?
Там же я и продемонстрировал, что это понятие противоречиво (в смысле классической логики), т.е. "его нет". Так же, как нет и "множества всех множеств", которое придумал Кантор.
маткиб писал(а):
Да не будут все никогда уверены. Многие не уверены даже, что к каждому натуральному числу единицу можно прибавить (наверно, это ультраконструктивисты
).
Это когда Вы человеку предъявляете абстрактную формулировку. А если спросить, можно ли к строке чёрточек добавить чёрточку, то, по-моему, практически любому можно объяснить, что помешать этому могут только ограничения в бумаге или чернилах.
маткиб писал(а):
Абстракции классической математики (по крайней мере, ZFC) тоже достаточно просты и принимаются обычно даже "не избранными" (за исключением 1% конструктивистов).
Наверное, большинство людей можно убедить в чём угодно, даже в том, что все кошки серые (особенно если в течение года ежедневно предъявлять ему по серой кошке). Но если человек настроен критически, то я не понимаю, каким образом для него можно придумать убедительное обоснование, например, того, что все строки чёрточек можно собрать в единую совокупность.
маткиб писал(а):
Под арифметикой Пеано обычно подразумевают теорию с аксиомами арифметики, основанную на классической логике первого порядка.
Ничто не мешает нам понимать под арифметикой Пеано теорию с аксиомами арифметики, основанную на конструктивной логике первого порядка. Если хотите, можете называть это "конструктивной арифметикой Пеано".
маткиб писал(а):
Кванторы по натуральным числам - это уже актуальная бесконечность.
Это почему? Это просто формула в языке. А если Вы спросите, откуда такие формулы взялись в аксиоматике, то на это есть простой ответ: Это формализация общеочевидного свойства строк чёрточек. Например:
(здесь "
" понимается не в теоретико-множественном смысле, а просто как форма записи предиката "является натуральным числом").
- это формализация общеочевидного факта, что если к строке чёрточек добавить чёрточку, то получится строка чёрточек.
маткиб писал(а):
А если ещё и индукцию применять по формулам с такими кванторами - так это тем более.
А в чём проблема с индукцией? Она определяется мета-теоретической аксиомой, которая говорит о "всех формулах арифметики". При этом, естественно, совершенно неважно, какие кванторы стоят в самой соответствующей "формуле арифметики".
маткиб писал(а):
Кстати, вроже если даже оставить интуиционистскую логику, то те же проблемы остаются.
А именно?
маткиб, относительно Вашего примера из следующего письма я попозже посмотрю.