Простите, тогда я вижу пока для себя один путь
Могу предложить еще два.
1. Оставить всю эту затею как бесперспективную, и заняться чем-то более полезным или интересным.
2. Попробовать наконец понять, что Вам отвечают. Перестать ссылаться на чатботов - я, как человек, немного разбирающийся в математике и хорошо разбирающийся в чатботах, Вам ответственно заявляю, что задачи вроде "объяснить плохо понимающему, что к чему, человеку, где у него ошибка" они решать не умеют.
Но это потребует с Вашей стороны усилий, а главное - смены подхода. Вы должны как минимум вместо того, чтобы пытаться всех убедить в своей правоте, стараться проверить, нет ли у Вас ошибок. А еще лучше - поверить существенно лучше разбирающимся людям, что ошибки есть, и Вам нужно понять, где. Начните с ответа на этот вопрос
найдите ошибку в моем доказательстве G-m теоремы по ссылке
post1653222.html#p1653222.
или ждать ответа из журнала
Там заинтересованы в минимизации своих усилий, и, хотя и очевидно, что и по существу у Вас ничего нет, но отвергнуть по мелким формальным поводам гораздо проще, поэтому так и сделают.
или засесть за систему Coq Versel, и проверить свое доказательство через Coq
Это выход в том смысле, что для того, чтобы хоть что-то нетривиальное записать в Coq, Вам придется освоить правила математических рассуждений достаточно, чтобы Ваши ошибки стали очевидными. Но думаю что того же результата можно добиться и гораздо проще.
аналогично проверке доказательства Уайлза
А что, доказательство Уайлса (или хоть какое-то) довели до состояния, допускающего компьютерную проверку?
-- 20.11.2024, 23:25 --Простите, при всем моем уважении к Вам, у Вас НЕТ полной моей статьи
Как несложно заметить, это неважно, чатботы легко в состоянии написать отзыв, не читая статью. Что является очередным свидетельством высокой надежности их ответов.
-- 20.11.2024, 23:26 --а журнал, вот он, мне трижды возвращали статью на доработку по мелочам
И вернут еще
раза, где
- число раз, которые Вы суммарно подадите статью.
---------------------------
Позвольте мне рассказать историю верификации доказательства Великой теоремы Ферма в системе компьютерного доказательства Coq.
Питер Лаффер (Peter Lefevre) и Жорж Гонтье (Georges Gonthier) из компании Microsoft Research Cambridge в 2004-2005 годах первыми успешно формализовали и верифицировали полное доказательство теоремы Ферма в системе компьютерного доказательства Coq.
Их работа опиралась на фундаментальное доказательство Эндрю Уайлза 1994-1995 годов. Ключевые моменты верификации:
1. Проект занял около двух лет интенсивной работы
2. Использовалась система Coq версии 8.0
3. Полностью формальное доказательство содержало более 100 000 строк кода
4. Потребовалось переосмыслить оригинальное доказательство Уайлза с точки зрения формальной математики
Основная мотивация - продемонстрировать надежность современных инструментов компьютерной математики и возможность верификации сложнейших математических доказательств.
Важно отметить, что это было первое полностью компьютерно-проверенное доказательство теоремы Ферма.
-----------------
Вот французы мне и сказали, верифицируйте в Coq Ваше доказательство Григорий,
а мы посмотрим что у Вас получится, если Coq признает Вашу истину,
то и мы признаем, а иначе - Вы свободны, Григорий!