2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 12  След.
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 22:42 
Заслуженный участник
Аватара пользователя


31/01/14
11345
Hogtown
realeugene в сообщении #1654316 писал(а):
Я правильно понимаю, что на больших промежутках времени траектории гармонического осциллятора становятся неминимальными?
Да, конечно. Но я вам привел примеры, когда даже на любом промежутке времени. минимальных траекторий нет
realeugene в сообщении #1654289 писал(а):
Человек утверждал, что изломы лагранжиана нужно любить, а не устранять.
Зависит от того, чего душа желает. Если желает обоснования, то можно сгладить и перейти к пределу. Если желает простоты полученного решения, то устранять не надо. А если желает публикации, то сгладить и выписать полную асимптотику полученного решения по параметру сглаживания. А поскольку разных сглаживаний можно придумать много, то и писать можно много.

А если хочется поблудить, то можно все это обсуждать. :mrgreen:

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение12.09.2024, 00:21 


04/09/24

14
Если подытожить, то че там с ответом? :roll:
1. Какой минимум действия будет для гран. условий $x_1=x_2=1, t=4\pi$
2. Будет ли действие при этом минимуме стационарным
3. Если да, то как это объяснить (поподробнее с фокальными точками)

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение12.09.2024, 07:03 


21/12/16
907
realeugene в сообщении #1654316 писал(а):
Рассмотрим вариацию в виде $\delta x(t) = \alpha t (1-t)$. Эта вариация равна нулю на концах отрезка времени. Несложно подсчитать, что дла рассматриваемого лагранжиана вариация действия будет $\delta S = \frac {|\alpha|} 3 \left( |\alpha| - \frac 1 2\right)$

$\delta S$ это линейная функция от $\delta x$. Вот вы эту линейную функцию сперва сюда выпишите плз, а потом будем подставлять конкретный $\delta x$

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение12.09.2024, 10:23 


27/08/16
10450
drzewo в сообщении #1654338 писал(а):
$\delta S$ это линейная функция от $\delta x$.
Не хочу спорить об определениях. Раз некоторые авторы требуют линейность, а не только первый порядок малости - замените $\delta S$ на $\Delta S$.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение12.09.2024, 11:14 
Заслуженный участник
Аватара пользователя


31/01/14
11345
Hogtown
realeugene в сообщении #1654343 писал(а):
Раз некоторые авторы требуют линейность, а не только первый порядок малости - замените $\delta S$ на $\Delta S$.
А зачем? Это может иметь смысл если мы ищем минимум (и в тогда причащение (а не вариация) функционала должно быть $\ge 0$ вместо $=0$. Все это хорошо известно в разного рода вариационных задачах (ну например минимизации $\int _0^1 (u'^2 - f(x)u )\,dx$ при условиях $u(0)=a,\ u(1)=b,\ u\ge 0$. Тут происходит разное употребление термина вариация, но оно происходит от того, что задачи разные, а вовсе не оттого, что "некоторые авторы требуют".

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение12.09.2024, 11:51 


27/08/16
10450
А, кстати, у лагранжиана с модулем есть ещё одна неприятность. На самом деле, для каждого момента времени существует бесконечное число траекторий, начинающихся и заканчивающихся в $x=0$. Потому что система с таким потенциалом - это нелинейный (релейный) осциллятор, частота которого устремляется в бесконечность при уменьшении амплитуды колебаний. Я правильно понимаю, что можно сказать, что каждая точка во времени при $x=0$ - фокальная?

Как правильно любить такой простой негладкий потенциал вариационными методами тем более становится любопытно.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение12.09.2024, 12:39 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599

(Оффтоп)

Red_Herring в сообщении #1654347 писал(а):
причащение (а не вариация) функционала
Религиозная мысль не стоит на месте. Расширим паству с низменных функций до абстрактных функционалов! :mrgreen:

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 21:00 


24/01/09
1296
Украина, Днепр
Cos(x-pi/2) в сообщении #1653852 писал(а):
"Принцип действия" гласит, что для отыскания истинной траектории $x(t)$ надо приравнять нулю вариацию действия, вычисляемого от $t_1$ до $t_2$ при заданных $x(t_1)=x_1$ и $x(t_2)=x_2.$


Не, "принцип действия" обычно в книжках по мехенике гласит, что "истинная траектория" будет той, для которой действие, вычисляемое вычисляемого от $t_1$ до $t_2$ при заданных $x(t_1)=x_1$ и $x(t_2)=x_2 будет минимальным.
А "приравнивание нулю вариации" - это уже технические моменты определённой методы по нахождению такого минимума.

Cos(x-pi/2) в сообщении #1653852 писал(а):
Единственное решение отбирается заданием положения $x(t_1)$ и скорости $\dot{x}(t_1).$


А отчего оно в других случаях не "отбирается", а единственно?
А тут - надо ещё вдруг отбирать, отчего-то вставляя какое-то дополнительное условие.
А в третьих - количество вариантов ограничено целым числом.

Любопытно, кстати, единственен ли потенциал с таким свойством (чтоб прямо не счетное количество, а континуум возможных вриантов был), и если ли например потенциал, где количество вариантов счетно.

-- Пт сен 13, 2024 20:02:28 --

amon в сообщении #1653872 писал(а):
Давайте все-таки сформулируем к 4-й странице обсуждения принцип наименьшего действия применительно к данной задаче. Он гласит, что траектория, начинающаяся в точке $x_0,$ заканчивающаяся в точке $x_1$ и проходимая за время $t,$ является точкой стационатности функционала


Стоп. Это почему "принцип наименьшего действия" вдруг становится "принципом стационарности действия"?

-- Пт сен 13, 2024 20:09:06 --

Red_Herring в сообщении #1653874 писал(а):
Правильно принцип стационарного действия.


Ага. И, получается, постулировать его требуется с оглядкой на квантовую механику.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 21:10 


21/12/16
907
Theoristos в сообщении #1654519 писал(а):
Не, "принцип действия" обычно в книжках по мехенике гласит, что "истинная траектория" будет той, для которой действие, вычисляемое вычисляемого от $t_1$ до $t_2$ при заданных $x(t_1)=x_1$ и $x(t_2)=x_2 будет минимальным.
А "приравнивание нулю вариации" - это уже технические моменты определённой методы по нахождению такого минимума

книжки выбирать надо, а не читать что попало

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 21:12 


24/01/09
1296
Украина, Днепр
realeugene в сообщении #1653901 писал(а):
Вообще, какие обычно накладывают условия гладкости на функцию Лагранжа


Отдельная забавная история, что часть "негладких", или даже "сильно негладких" функций вроде бесконечной прямоугольной ямы, активно пользуется физиками как те "мухи-дрозофилы".

-- Пт сен 13, 2024 20:15:30 --

drzewo в сообщении #1654523 писал(а):
книжки выбирать надо, а не читать что попало


Вообще не понял такого фыркания.
Ландау с Фейнманом - это "что попало"? (и там, и там принцип изначально формулируется именно как минимум действия)

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 21:19 


21/12/16
907
Theoristos в сообщении #1654524 писал(а):
Ландау с Фейнманом - это "что попало"? (и там, и там принцип изначально формулируется именно как минимум действия)

Я знаю, и знаю, что переучивать после Фейнмана и Ландафшица бесполезно. Считайте, что минимум.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 21:21 


24/01/09
1296
Украина, Днепр
Утундрий в сообщении #1653952 писал(а):
Простите, а что мешает сгладить излом?


А при сглаживании там всегда существует вполне кондовая траектория с остановом и возвращением. Ну есть ещё вторая, в другую сторону и с другим действием - ну, такое... тут предлагают волюнтаристски выбирать доп. условием не входящим в исходный принцип.

А вот с изломом получается та самая ахиллова черепаха, про которую написал realeugene.
То самое
realeugene в сообщении #1654188 писал(а):
То есть эта траектория - не минимум. И не максимум. А не пойми что.



-- Пт сен 13, 2024 20:23:46 --

peregoudov в сообщении #1654163 писал(а):
истинная мировая линия соответствует наименьшему действию только до первой фокальной точки. В примере с геодезическими на сфере это противоположный полюс, но это вырожденный случай, в общем случае будет касание мировой линии и каустики, образованной пучком всевозможных мировых линий, испущенных из начальной точки.


Подскажите, а в каких-то монографиях эти вопросы освещаются?

-- Пт сен 13, 2024 20:29:01 --

amon в сообщении #1654245 писал(а):
Траектория, проходящая из нуля в ноль за любое время единственная $x\equiv0.$


Почему это?
Для $|x|$ - из на первых взгляд три, а на второй - как отметил realeugene, всё ещё более хитро.
Для $x^2$ в некоторых случаях их бесконечное множество, а в некоторых - действительно только одна. А если "из 1 в 1" - так вообще ни одной. Как в том анекдоте - принцип есть, а траекторий - нет.

-- Пт сен 13, 2024 20:41:14 --

drzewo
drzewo в сообщении #1654525 писал(а):
Я знаю, и знаю, что переучивать после Фейнмана и Ландафшица бесполезно. Считайте, что минимум.


Можно библиотечку "правильных" книг?

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 21:55 


21/12/16
907
Theoristos в сообщении #1654526 писал(а):
Можно библиотечку "правильных" книг?

Гурса Курс математического анализа том 3 часть 2 вариационное исчисление
Ахиезер лекции по вариационному исчислению
Theoristos в сообщении #1654526 писал(а):
Почему это?

потому, что фазовый портрет состоит из замкнутых кривых, которые через 0 не проходят

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 22:12 


27/08/16
10450
drzewo в сообщении #1654529 писал(а):
потому, что фазовый портрет состоит из замкнутых кривых, которые через 0 не проходят
Вы сейчас про какой именно ноль?

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение13.09.2024, 22:18 
Заслуженный участник
Аватара пользователя


31/01/14
11345
Hogtown
Theoristos в сообщении #1654519 писал(а):
обычно в книжках по мехенике гласит, что "истинная траектория" будет той, для которой действие, вычисляемое вычисляемого от $t_1$ до $t_2$ при заданных $x(t_1)=x_1$ и $x(t_2)=x_2 будет минимальным.

Я книжек по мехенике не читаю.
Theoristos в сообщении #1654519 писал(а):
Ага. И, получается, постулировать его требуется с оглядкой на квантовую механику.
А как начет теории сплошной среды (вкл. теорию упругости)?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 166 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 12  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group