fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 12  След.
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение09.09.2024, 12:46 


27/08/16
10508
В общем, следует признать, что с негладкими лагранжианами нужна огромная осторожность. Решение может существовать или не существовать в зависимости от настроения богов.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение09.09.2024, 13:38 
Заслуженный участник
Аватара пользователя


15/10/08
12610
Простите, а что мешает сгладить излом?

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение09.09.2024, 13:46 


21/12/16
994
Изломы сглаживать не надо, их надо любить, они упрощают решение задачи. В задачах типа той, что мы обсуждаем, очень хорошо пишутся условия на изломах, они выводятся из вариационного принципа.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение09.09.2024, 14:29 


27/08/16
10508
drzewo
А можете продемонстрировать как правильно следует любить $L(x, \dot x) = \dot x ^2 - |x|$?

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение10.09.2024, 17:24 
Заслуженный участник
Аватара пользователя


04/09/14
5311
ФТИ им. Иоффе СПб
realeugene в сообщении #1653968 писал(а):
drzewo
А можете продемонстрировать как правильно следует любить $L(x, \dot x) = \dot x ^2 - |x|$?
Специально для Вас. Потенциал можно представить как
$U=\begin{cases} -x, & \text{если $x<0$;} \\ x, & \text{если $x\ge 0$.} \end{cases}.$
Функция Лагранжа имеет разный вид справа и слева от нуля. Действие записывается как
$S[x]=\int\limits_{t_0}^{t}L_1d\tau+\int\limits_{t}^{t_1}L_2d\tau,$
где $x(t)=0.$ В этой точке сама траектория непрерывна, а скорость - как повезет. $L=\frac{\dot{x}^2}{2} - U(x).$
Вариационная задача получается "со свободным временем" - мы заранее не знаем $t.$ В этом случае (см В.И. Смирнов, насколько я помню, т.3 часть то ли 1, то ли 2) возникает условие
$L_1-\dot x\frac{\partial L_1}{\partial \dot x}=L_2-\dot x\frac{\partial L_2}{\partial \dot x}\ \text{при}\ x=0$
или $E_1=E_2$ (энергия сохраняется). Из последнего в точке $x=0$ следует, что скорость в точке $x=0$ не меняется (повезло), и траектория получается непрерывной вместе с первой производной. При $x(0)=0,\,\dot x(0)=0$ точка живет там вечно в силу сохранения энергии.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение10.09.2024, 19:48 


10/03/07
537
Москва
Сразу извиняюсь, что не хватило терпения внимательно прочитать всю тему, но хочется еще раз обратить внимание на то, что уже писали amon и Red_Herring: во-первых, в вариационном принципе фиксируются пары $(x,t)$ в начальный и конечный моменты времени, а не координата и скорость в начальный момент, а, во-вторых, истинная мировая линия соответствует наименьшему действию только до первой фокальной точки. В примере с геодезическими на сфере это противоположный полюс, но это вырожденный случай, в общем случае будет касание мировой линии и каустики, образованной пучком всевозможных мировых линий, испущенных из начальной точки.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение10.09.2024, 22:02 


27/08/16
10508
amon в сообщении #1654149 писал(а):
Специально для Вас.
Премного благодарен.

amon в сообщении #1654149 писал(а):
Действие записывается как
$S[x]=\int\limits_{t_0}^{t}L_1d\tau+\int\limits_{t}^{t_1}L_2d\tau,$
где $x(t)=0.$ В этой точке сама траектория непрерывна, а скорость - как повезет.
Траектория не обязана проходить через излом только один раз. Более того, мы рассматриваем траекторию, которая идёт по излому. То есть тело, остающееся неподвижно в самом низу потенциальной энергии.

amon в сообщении #1654149 писал(а):
и траектория получается непрерывной вместе с первой производной.
Если тело просто проскакивает излом - то всё проще, можно сшивать.

amon в сообщении #1654149 писал(а):
При $x(0)=0,\,\dot x(0)=0$ точка живет там вечно в силу сохранения энергии.
Но есть нюанс. Для такой траектории с неподвижно сидящим телом в вершине существуют вариации, приводящие к уменьшению действия уже в первом порядке по величине вариации. То есть эта траектория - не минимум. И не максимум. А не пойми что.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 00:21 
Заслуженный участник
Аватара пользователя


31/01/14
11375
Hogtown
drzewo в сообщении #1653960 писал(а):
Изломы сглаживать не надо, их надо любить, они упрощают решение задачи. В задачах типа той, что мы обсуждаем, очень хорошо пишутся условия на изломах, они выводятся из вариационного принципа.
Сглаживание позволяет часто обосновать хорошую постановку задачи, рассмотрев предел при параметре сглаживания, стремящемся к $0$, а иногда и понять какие условия на изломе появиться должны в пределе. Но усложняет (а иногда и очень сильно) решение в явном виде.
Цитата:
Наука умеет много гитик.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 00:30 


21/12/16
994

(Оффтоп)



-- 11.09.2024, 01:38 --

amon Почитайте про принцип Гамильтона в системах с ударом:
https://dropmefiles.com/4Abql стр 13
Ситуация почти таже, что у нас.Роль ударного многообразия в конфигурационном пространстве выполняет многообразие на котором рвется градиент потенциала. Анализ аналогичен, лишь в одном месте знак отличается:)

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 01:22 


27/08/16
10508

(Оффтоп)


 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 12:08 
Заслуженный участник
Аватара пользователя


04/09/14
5311
ФТИ им. Иоффе СПб
realeugene в сообщении #1654188 писал(а):
Для такой траектории с неподвижно сидящим телом в вершине существуют вариации, приводящие к уменьшению действия уже в первом порядке по величине вариации.
А что Вы в такой нездоровой обстановке варьировать собираетесь? Мы с peregoudov'ым (к стати, - с возвращением!) и прочими знатоками принципа наименьшего действия уже пятую страницу пытаемся объяснить, что действие надо сравнивать на траекториях, проходящих через те же точки за то же время. Траектория, проходящая из нуля в ноль за любое время единственная $x\equiv0.$ Поэтому тут даже варьировать нечего. На остальное отвечу позже - сейчас времени нет.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 12:44 


27/08/16
10508
amon в сообщении #1654245 писал(а):
Мы с peregoudov'ым (к стати, - с возвращением!) и прочими знатоками принципа наименьшего действия уже пятую страницу пытаемся объяснить, что действие надо сравнивать на траекториях, проходящих через те же точки за то же время. Траектория, проходящая из нуля в ноль за любое время единственная $x\equiv0.$
Рассмотрите фиксированный отрезок времени $t \in [0, 1]$. Вариация - тело улетает в начальный момент времени вправо и возвращается свободно падая в конечный момент времени в нуль. Как дополнительный бонус, на этой вариации всюду выполняется уравнение Эйлера-Лагранжа во всех точках, где оно существует.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 13:55 
Заслуженный участник
Аватара пользователя


04/09/14
5311
ФТИ им. Иоффе СПб
realeugene в сообщении #1654247 писал(а):
Рассмотрите фиксированный отрезок времени $t \in [0, 1]$.
Еще лучше получится, если ввести еще одну координату. $L=\frac{\dot{x}^2}{2}+ \frac{\dot{y}^2}{2}- |x|.$ Тогда при начальной точке $(0,0)$ и конечной $(0,y_0)$ за время $t$ будет две траектории, удовлетворяющих уравнению Эйлера-Лагранжа и рассказом про любое время тут не отделаешься. Катастрофы в этом нет, поскольку принцип наименьшего действия не утверждает, что траектория обязательно обеспечивает минимум или максимум. Он говорит, что траектория - это точка стационарности $\frac{\delta S}{\delta x(t)}=0.$ Если таких точек несколько, значит возможно несколько траекторий.

-- 11.09.2024, 14:22 --

drzewo в сообщении #1654195 писал(а):
Ситуация почти таже, что у нас.
IMHO, чуда в этом нет. Для упругого удара можно (наверно) считать, что потенциал, скажем, внутри шара $U_0,$ а вне - ноль. Тогда вариационная задача сведется к задаче с разрывным потенциалом с той разницей, что положение границ зависит от времени, что приведет к некоторой модернизации внеинтегрального члена. Аккуратно не смотрел.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 14:23 


27/08/16
10508
amon в сообщении #1654258 писал(а):
Еще лучше получится, если ввести еще одну координату.
Это избыточно: можно строить график от времени. Существует три разных траектории из начальной точки в конечную, но только две из них являются точками стационарности действия.

 Профиль  
                  
 
 Re: Гармонический осциллятор и принцип наименьшего действия
Сообщение11.09.2024, 14:42 
Заслуженный участник
Аватара пользователя


04/09/14
5311
ФТИ им. Иоффе СПб
realeugene в сообщении #1654261 писал(а):
Существует три разных траектории из начальной точки в конечную, но только две из них являются точками стационарности действия.
Для меня это загадочное утверждение. Не поясните, что за траектории?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 166 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 12  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Most1k


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group