Матрицы, тензорное исчисление давали, но я его плохо понял. Или так давали, только основы.
-- Пт сен 06, 2024 20:51:14 --Штош.
По вашим ответам я понял что математики понимают под размерностью множеств, о чём думают по умолчанию. Благодарю всех. И да, физики подходят с другой стороны. Теперь я вижу что математик, с которым я разговаривал в начале, увёл наш разговор в сторону и на мои основные вопросы не ответил. Я здесь прошу помощи чтобы разобраться в сути того разговора. Но для этого придётся сначала сказать вслух то, что я подразумевал понятным само по себе.
Мне надо было разобраться в пространстве Минковского (ПМ). В универе я относительность на 2м курсе теоретически сдал и забыл, тогда всё было понятно. Но теперь попытался снова вспомнить, применить практически на рисунках и не смог. Упёрся в неразрешенный вопрос.
Начинал с обычной евклидовой комплексной плоскости. В ней прямоугольная система координат xOy, z=x+iy это и комплексное число и вектор, который его изображает и точка на конце вектора [Дубровин В.Т. Теория функций комплексного переменного. Теория и практика. Учебное пособие. Казань, 2010, стр. 5].
Размерность: пространство, в котором мы живём, 3-мерное потому, что для задания любой его точки прямоугольной системой координат надо 3 оси. Поверхность стола 2-мерная потому, что хватит 2 оси, а любая ненулевая координата 3-й оси выведет с поверхности. Числовая ось 1-мерная, её точки отстоят от начала координат на расстояния, выражаемые действительными числами. "Единицей размерности" выступает числовая ось и, соответственно, множество R действительных чисел. Поэтому по умолчанию подразумеваем, словами которые я тут выучил, что всё рассуждение над полем R.
Расстояние на комплексной плоскости
. Длина вектора 1(1,0) равна
и для вектора, изображающего мнимую единицу
i(0,1) то же:
. Здесь всё понятно.
В пространстве Минковского всё так же, кроме расстояния между точками
. Сразу отвечу на частый вопрос: это именно длина, расстояние, потому что
«
...ds2=c2dt2-dx2-dy2-dz2 (2.4).
Форма выражения … (2.4) позволяет рассматривать интервал, с формальной математической точки зрения, как расстояние между двумя точками в воображаемом четырехмерном пространстве (на осях которого откладываем x,y,z и произведение сt). Имеется, однако, существенное отличие в правиле составления этой величины по сравнению с правилом обычной геометрии: при образовании квадрата интервала квадраты разностей координат по различным осям суммируются не с одинаковыми, а с различными знаками» [Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учеб. пособие. В 10 т. Т. II. Теория поля.- 7-е изд., испр.-М.Наука. Гл. ред. физ.-мат. Лит., 1988. 512 с. ] - это ЛЛ.
У ЛЛ ни намёка, что координатные оси в ПМ какие-то особые, значит, те же одномерные евклидовы.
Размерность отрезка, как части прямой, 1. Например, прямоугольник 2-мерный, потому что как ни крути оси координат вокруг него, проекции обязательно будут минимум на 2 оси, одной не обойтись. По той же причине и комплексное число двумерное — у него проекции минимум на две оси.
И вот суть вопроса:
. У числа
i, как у любого комплексного, есть две части, Re и Im. Если длина вектора равна комплексному числу, это значит, что между длиной и числом нет различий, поэтому, если у числа есть две части, то они обязаны быть и у длины вектора.
Тогда как на одномерном отрезке разместить две разные части? Это было бы возможно, если бы между началом и концом отрезка были две прямые, но по аксиоме пространства, которая в ПМ такая же, как у Евклида, прямая одна.
Я не вижу возможности изобразить длиной одномерного вектора двумерное комплексное число. Или, другими словами, приравнять длину вектора комплексному числу. Разместить двумерную фигуру на одномерном отрезке. Покажите как это сделать.