2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5  След.
 
 Одномерное комплексное число
Сообщение02.09.2024, 20:25 
Разговаривал на тему пространства Минковского с профессиональным математиком и он выдвинул мне утверждение, что комплексное число одномерное. По моим понятиям, чтобы определить комплексное число нужно два вещественных, одного мало, поэтому комплексное всегда двумерное. Я попытался у него выяснить что он имеет в виду, но не осилил его мат. терминологию, а объяснить простыми словами он не умеет.
Может кто-нибудь мне растолковать, как назвать комплексное число одномерным? Что это за математическая терминология такая?

 
 
 
 Re: Одномерное комплексное число
Сообщение02.09.2024, 20:30 
Обычно, когда в математическом анализе говорят про размерность, имеют в виду размерность над $\mathbb R$. Но вообще полезно рассматривать размерности над произвольными полями (и даже телами), в том числе над $\mathbb C$, когда это имеет смысл. Например, $\mathbb C$ как векторное пространство над самим собой одномерно, сфера Римана $\mathbb C \mathrm P^1$ является проективной прямой над $\mathbb C$ (одномерной!), а над $\mathbb R$ оба эти объекта двумерны. В теории чисел вообще часто можно встретить размерности над $\mathbb Q$ и конечными полями.

 
 
 
 Re: Одномерное комплексное число
Сообщение02.09.2024, 20:53 
Аватара пользователя
dgwuqtj в сообщении #1652861 писал(а):
Разговаривал на тему пространства Минковского с профессиональным математиком и он выдвинул мне утверждение, что комплексное число одномерное.
Как профессиональный математик, он должен был привести вам пример и двумерного числа, что бы это ни значило.

Andante в сообщении #1652858 писал(а):
По моим понятиям, чтобы определить комплексное число нужно два вещественных, одного мало, поэтому комплексное всегда двумерное.
А рациональные числа у вас скольки-мерные? (следующий вопрос будет про целые :-) )

 
 
 
 Re: Одномерное комплексное число
Сообщение02.09.2024, 20:55 
Аватара пользователя
dgwuqtj в сообщении #1652861 писал(а):
По моим понятиям, чтобы определить комплексное число нужно два вещественных
...либо одно комплексное (тривиальным образом).

Поэтому пространство комплексных чисел двумерно, если его рассматривать как линейное пространство над полем вещественных чисел, и одномерно, если его рассматривать как линейное пространство над полем комплексных чисел.

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 09:27 
А вы не догадались его спросить - какова размерность пространства действительных чисел $\mathbb{R}$?

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 11:14 
Аватара пользователя
Andante в сообщении #1652858 писал(а):
определить комплексное число нужно два вещественных, одного мало
Как известно, два вещественных числа можно записать в виде одного, просто перемежая цифры. Если ваш собеседник был профессиональным математиком, то он должен был понимать, с кем имеет дело и не метать бисер.

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 11:19 
Опередил меня уважаемый Red_Herring.
Может, тот знакомый имел в виду биекцию между множествами комплексных и действительных чисел?

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 11:24 
Аватара пользователя
Booker48 в сообщении #1652929 писал(а):
Может, тот знакомый имел в виду биекцию между множествами комплексных и действительных чисел?
Что он имел в виду выяснить не удастся. Просто слово "определить" очень плохо определено.

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 17:58 
Legioner93 в сообщении #1652866 писал(а):
Как профессиональный математик, он должен был привести вам пример и двумерного числа, что бы это ни значило.

Увы.

Рациональные, целые, вообще действительные одномерные, потому что их можно измерить проекцией на одну числовую ось. Соответственно, для комплексного числа осей надо две. Я ошибаюсь?

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 18:05 
Andante в сообщении #1652989 писал(а):
Соответственно, для комплексного числа осей надо две. Я ошибаюсь?

Вам ведь уже ответили
Mikhail_K в сообщении #1652867 писал(а):
пространство комплексных чисел двумерно, если его рассматривать как линейное пространство над полем вещественных чисел, и одномерно, если его рассматривать как линейное пространство над полем комплексных чисел

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 19:00 
Плоскость двумерная. Окружающий мир трехмерный. То есть, единицей измерения выступает числовая ось, так? Я спрашиваю потому, что разговор заходил о пространстве, а там определена система координат. Вот по числу координатных осей и счёт. С этой точки зрения комплексное число двумерное.

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 19:03 
Аватара пользователя
Andante в сообщении #1652989 писал(а):
Рациональные, целые, вообще действительные одномерные, потому что их можно измерить проекцией на одну числовую ось.

Вещественные числа над полем $\mathbb{Q}$ бесконечномерны.

-- 03.09.2024, 19:04 --

Andante в сообщении #1652996 писал(а):
То есть, единицей измерения выступает числовая ось, так?

Нет. Нет никакой "Числовой Оси".

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 19:37 
А в школе учили что есть. Врали?

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 19:44 
Аватара пользователя
Andante в сообщении #1653003 писал(а):
А в школе учили что есть.

Приведите, пожалуйста, цитату из учебника.

 
 
 
 Re: Одномерное комплексное число
Сообщение03.09.2024, 19:51 
Andante в сообщении #1652996 писал(а):
С этой точки зрения комплексное число двумерное.

Да, с этой точки зрения комплексное число двумерное.

 
 
 [ Сообщений: 74 ]  На страницу 1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group