Там, собственно говоря, не неточности в доказательстве, а мелкая опечатка, написал
![$A$ $A$](https://dxdy-02.korotkov.co.uk/f/5/3/d/53d147e7f3fe6e47ee05b88b166bd3f682.png)
вместо
![$B$ $B$](https://dxdy-03.korotkov.co.uk/f/6/1/e/61e84f854bc6258d4108d08d4c4a085282.png)
в нескольких местах.
Я как-то привык считать, что опечатка - это один из вариантов неточности изложения (о каких-либо
ошибках в Вашем доказательстве я ведь не говорил). Всё же, если я употребил не вполне подходящее слово, охотно приношу извинения.
А на основании чего Вы так полагаете ?
Исключительно на основании личного опыта. Если доказательство начать фразой "Наложим плоскость на себя так, чтобы...", то большинство шестиклассников, которых я видел, впадёт в тоску и уже не будет пытаться что-то понять, в лучшем случае постарается запомнить сказанное механически, не вдумываясь в слова. Хотя по сути, конечно, ничего сложного в Вашем доказательстве нет. Дело в том, что подавляющее большинство людей (и детей в том числе) предпочитает ясные зрительные образы рассуждениям, которые кажутся им абстрактными. И не склонно мыслить так, как обычно мыслит математик. Иное дело, если Вы то же самое изложите другими словами. Например, на языке "кальки" (когда-то мы её здесь на форуме упоминали): представьте себе, что второй треугольник нарисован на кальке. Положим эту кальку поверх первого рисунка, сдвинем до совпадения точек
![$A$ $A$](https://dxdy-02.korotkov.co.uk/f/5/3/d/53d147e7f3fe6e47ee05b88b166bd3f682.png)
и
![$A'$ $A'$](https://dxdy-03.korotkov.co.uk/f/6/3/0/63049c301195311c277cd8d2b79e87ca82.png)
, затем повернём кальку вокруг точки
![$A$ $A$](https://dxdy-02.korotkov.co.uk/f/5/3/d/53d147e7f3fe6e47ee05b88b166bd3f682.png)
на такой угол, чтобы точка
![$B'$ $B'$](https://dxdy-04.korotkov.co.uk/f/3/b/5/3b573ce6b242559dcd67e9ed6a52eb2182.png)
совпала с точкой
![$B$ $B$](https://dxdy-03.korotkov.co.uk/f/6/1/e/61e84f854bc6258d4108d08d4c4a085282.png)
... Вот так Вас шестиклассники легко поймут, я думаю. Если у Вас есть знакомый ребёнок со средними способностями к математике, попробуйте ради эксперимента изложить ему эту теорему двумя способами: так как Вы предложили и так, как предлагаю я. Мне кажется, разница в его понимании будет вполне заметна.
-- 16.07.2024, 21:58 --Вслед за Вами говорю о "шестиклассниках". На самом деле теперь геометрия начинается с седьмого класса.