2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 50, 51, 52, 53, 54, 55, 56 ... 72  След.
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 17:02 
Аватара пользователя


29/04/13
8112
Богородский
Если с 23-х это правильно, тогда
$$C19=\prod_{p\geqslant23}^{\infty}\frac{p^{18}(p - 19)}{(p - 1)^{19}}\approx 0.04941046312995068503622516571
$$

Другие тоже вроде понял как считать.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 17:54 


23/02/12
3357
Yadryara в сообщении #1645139 писал(а):
Код:
Pat/10^      8         9         10
5-120     5523     28917     162852
5-240     5538     28641     163187
5-360     5446     28495     163027
Эти кортежи имеют одинаковую длину и их количество слабо зависит от диаметра. Притом количество практически совпадает с ростом диапазона, т.е. асимптотически равно.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 18:10 
Аватара пользователя


29/04/13
8112
Богородский
vicvolf в сообщении #1646133 писал(а):
Эти кортежи имеют одинаковую длину и их количество слабо зависит от диаметра.

Ну я просто грубее сказал: не зависят от диаметра. Особенно, на интересующей высоте — 1е24-26. Поэтому я и попросил посчитать любой:

Yadryara в сообщении #1646111 писал(а):
Ну и та же просьба: посчитать подальше любой из этих трёх паттернов с равными гэпами.

Можно и другие множители попробовать, например, учетверить и 5-480 посчитать.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 18:13 


23/02/12
3357
Yadryara в сообщении #1646111 писал(а):
Ну и та же просьба: посчитать подальше любой из этих трёх паттернов с равными гэпами. Относительная погрешность, видимо, снова уменьшится.
Конечно и считать не надо.
Yadryara в сообщении #1646111 писал(а):
Кстати, прогноз по этим же паттернам, 5-120, 5-240, 5-360 получается простым учетверением множителя, то есть беру не $\frac{15^4}{2^{10}}$, а $\frac{15^4}{2^{8}}$
Почему учетверение? Мы же говорили, что при разных диаметрах, но одной длины кортежей, их количество, а следовательно коэффициенты, отличаются мало.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 18:51 
Аватара пользователя


29/04/13
8112
Богородский
Dmitriy40 в сообщении #1646102 писал(а):
вот реальные количества всех (и чистых и грязных) до 1e13 для трёх паттернов 7-108: 399276, 265824, 354380.

"Огласите весь список, пожалуйста".
Ну то есть, каковы реальные количества всех для этих 7-к для более низких и/или более высоких высот? Попробую подобрать множитель.

vicvolf в сообщении #1646138 писал(а):
Почему учетверение? Мы же говорили, что при разных диаметрах, но одной длины кортежей, их количество, а следовательно коэффициенты, отличаются мало.

Уже писал, что для троек вроде отличие не более чем в 2 раза, а для 5-к может и в 4 раза не предел. Ну как почему? По факту. И для других паттернов смотреть надо реальные количества.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 19:25 
Заслуженный участник


20/08/14
11766
Россия, Москва
Yadryara в сообщении #1646141 писал(а):
"Огласите весь список, пожалуйста".
Ну то есть, каковы реальные количества всех для этих 7-к для более низких и/или более высоких высот? Попробую подобрать множитель.
Дальше 1e13 не считалось:
Код:
1e8:    159     110     152
1e9:    638     410     618
1e10:   2883    1848    2538
1e11:   13809   9205    12198
1e12:   71638   47915   62870
1e13:   399276  265824  354380

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 19:38 


23/02/12
3357
Yadryara в сообщении #1646141 писал(а):
Уже писал, что для троек вроде отличие не более чем в 2 раза, а для 5-к может и в 4 раза не предел. Ну как почему? По факту. И для других паттернов смотреть надо реальные количества.
Yadryara в сообщении #1645666 писал(а):
Код:
Pat/10^          10

3- 12       5427928
3- 24       5429016
3- 36       5429545
3- 48       5428800
3- 72       5431499
3- 96       5428980
3-108       5433210



Вот изменение количества при длине кортежа 3. Где Вы видите изменение в 2 раза?
Yadryara в сообщении #1646011 писал(а):
Интересно, что для количества всех 3-12 такое значение

$$C=9\prod_{p\geqslant5}^{\infty}\frac{p^2(p - 3)}{(p - 1)^3}\approx 5.716497191438$$

даёт хорошие приближения. Например, для $10^{10}$ факт — 5427928 штук, а по формуле — 5430584.
Этот коэффициент не должен меняться в 2 раза для $3-24,3-36,....$, так как это повлекло бы изменение количества таких кортежей в 2 раза, чего нет.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 19:55 
Аватара пользователя


29/04/13
8112
Богородский
vicvolf в сообщении #1646144 писал(а):
Где Вы видите изменение в 2 раза?

Так вот же оно:

Yadryara в сообщении #1645067 писал(а):
Код:
Pat/10^      8         9         10

3- 60   222008   1519360   10858342
3-120   221676   1519133   10862854
3-180   222226   1518738   10862078
3-240   222109   1520378   10862626
3-300   221820   1518230   10859084

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 20:37 


23/02/12
3357
Yadryara в сообщении #1646145 писал(а):
vicvolf в сообщении #1646144 писал(а):
Где Вы видите изменение в 2 раза?

Так вот же оно:

Yadryara в сообщении #1645067 писал(а):
Код:
Pat/10^      8         9         10

3- 60   222008   1519360   10858342
3-120   221676   1519133   10862854
3-180   222226   1518738   10862078
3-240   222109   1520378   10862626
3-300   221820   1518230   10859084

Это изменение связано с диапазоном. Оно зависит только от границ интеграла $\int_2^x {\frac{dt}{\ln^k t}}$, а не от коэффициента $C$ перед интегралом, который зависит только от структуры кортежа.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.07.2024, 21:03 
Аватара пользователя


29/04/13
8112
Богородский
vicvolf в сообщении #1646146 писал(а):
Это изменение связано с диапазоном. Оно зависит только от границ интеграла $\int_2^x {\frac{dt}{\ln^k t}}$,

Вот это не понял.

vicvolf в сообщении #1646146 писал(а):
а не от коэффициента $C$ перед интегралом, который зависит только от структуры кортежа.

Ну так я уже не в первый раз спрашиваю, как посчитать $C$, зная структуру кортежа, например 3-12 ?

Dmitriy40
По первым двум примерно:

Код:
10^        HL-1*         Fact  Pogresh.

08      2426.0007        159  14.3
09      2894.6720        638   3.54
10      5067.2628       2883   0.758
11     15940.080       13809   0.154
12     73871.395       71638   0.0312
13    399089.42       399276  -0.000467
14   2307193.2   

08      1612.6996        110   13.7
09      1924.2519        410   3.69
10      3368.4956       1848   0.823
11     10596.271        9205   0.151
12     49106.486       47915   0.0249
13    265297.27       265824  -0.00198
14   1533721.6   

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.07.2024, 13:17 
Аватара пользователя


29/04/13
8112
Богородский
И... молчок. Ну я понял, гипотеза HL-1 как раз под количество всех кортежей и заточена. Для чистых кортежей она подходит только в тех случаях, когда кортеж невозможно загрязнить.

Вот собрал проверенную асимптотику:

Код:
Kortezh                 Asimpt. HL-1

Pattern               Mnoj    Baz   Log

                                      -2
0, 2                     2     C2   Li
                                      -2
0, 4                     2     C2   Li
                                      -2
0, 6                     4     C2   Li

                         9            -3
0, 2, 6                  _     C3   Li
                         2

                         9            -3
0, 4, 6                  _     C3   Li
                         2

                        27            -4           
0, 2, 6, 8              __     C4   Li             
                         2                         

                                      -4
0, 4, 6,10              27     C4   Li
                         
                          4                         
                        15            -5           
0, 2, 6, 8,12           ____   C5   Li             
                          11                       
                         2                         
                       
                          5                         
                        15            -6           
0, 4, 6,10,12,16        ____   C6   Li             
                          13                       
                         2                         

Базовые константы:

Код:
C2 = 0.6601618158468695739278121100
C3 = 0.6351663546042712072066965913
C4 = 0.3074948787583270931233544861
C5 = 0.4098748850882364744787812123
C6 = 0.1866142973583583966569248480
C7 = 0.3694375103864986893231907499

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.07.2024, 15:04 


23/02/12
3357
Yadryara в сообщении #1646147 писал(а):
Ну так я уже не в первый раз спрашиваю, как посчитать $C$, зная структуру кортежа, например 3-12 ?
Так у Вас правильная формула:
Yadryara в сообщении #1646011 писал(а):
Интересно, что для количества всех 3-12 такое значение
$$C=9\prod_{p\geqslant5}^{\infty}\frac{p^2(p - 3)}{(p - 1)^3}$$

Как Вы ее нашли?
Как подсчитали произведение по простым $\approx 5.716497191438$
Yadryara в сообщении #1646147 писал(а):
vicvolf в сообщении #1646146 писал(а):
Это изменение связано с диапазоном. Оно зависит только от границ интеграла $\int_2^x {\frac{dt}{\ln^k t}}$,

Вот это не понял.
Как нашли количество кортежей по формуле — 5430584, если не поняли?

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.07.2024, 15:19 
Аватара пользователя


29/04/13
8112
Богородский
vicvolf в сообщении #1646203 писал(а):
Yadryara в сообщении #1646147 писал(а):
Ну так я уже не в первый раз спрашиваю, как посчитать $C$, зная структуру кортежа, например 3-12 ?
Так у Вас правильная формула:

У меня правильная формула для количества всех, а я спрашивал именно про чистые.

vicvolf в сообщении #1646203 писал(а):
Как Вы ее нашли?

См. ниже.

vicvolf в сообщении #1646203 писал(а):
Как нашли количество кортежей по формуле — 5430584, если не поняли?

Как считать интегральный логарифм Li , я конечно понял. PARI с этим здорово справляется.

Я не понял смысла Вашей фразы.

Собственно, все базовые константы, видимо, можно вычислить единообразно. PARI и с этим здорово справляется:

Код:
{print();

print("C02 = ",prodeulerrat(( p^ 2 -  2*p^ 1 )/(p-1)^ 2, 1, 3));
print("C03 = ",prodeulerrat(( p^ 3 -  3*p^ 2 )/(p-1)^ 3, 1, 5));
print("C04 = ",prodeulerrat(( p^ 4 -  4*p^ 3 )/(p-1)^ 4, 1, 5));
print("C05 = ",prodeulerrat(( p^ 5 -  5*p^ 4 )/(p-1)^ 5, 1, 7));
print("C06 = ",prodeulerrat(( p^ 6 -  6*p^ 5 )/(p-1)^ 6, 1, 7));
print("C07 = ",prodeulerrat(( p^ 7 -  7*p^ 6 )/(p-1)^ 7, 1,11));
print("C08 = ",prodeulerrat(( p^ 8 -  8*p^ 7 )/(p-1)^ 8, 1,11));
print("C09 = ",prodeulerrat(( p^ 9 -  9*p^ 8 )/(p-1)^ 9, 1,11));
print("C10 = ",prodeulerrat(( p^10 - 10*p^ 9 )/(p-1)^10, 1,11));
print("C11 = ",prodeulerrat(( p^11 - 11*p^10 )/(p-1)^11, 1,13));
print("C12 = ",prodeulerrat(( p^12 - 12*p^11 )/(p-1)^12, 1,13));
print("C13 = ",prodeulerrat(( p^13 - 13*p^12 )/(p-1)^13, 1,17));
print("C14 = ",prodeulerrat(( p^14 - 14*p^13 )/(p-1)^14, 1,17));
print("C15 = ",prodeulerrat(( p^15 - 15*p^14 )/(p-1)^15, 1,17));
print("C16 = ",prodeulerrat(( p^16 - 16*p^15 )/(p-1)^16, 1,17));
print("C17 = ",prodeulerrat(( p^17 - 17*p^16 )/(p-1)^17, 1,19));
print("C18 = ",prodeulerrat(( p^18 - 18*p^17 )/(p-1)^18, 1,19));
print("C19 = ",prodeulerrat(( p^19 - 19*p^18 )/(p-1)^19, 1,23));

}quit;

C02 = 0.6601618158468695739278121100
C03 = 0.6351663546042712072066965913
C04 = 0.3074948787583270931233544861
C05 = 0.4098748850882364744787812123
C06 = 0.1866142973583583966569248480
C07 = 0.3694375103864986893231907499
C08 = 0.2324193345867165462061302127
C09 = 0.1201712067747417214699894646
C10 = 0.0418040508121816571039748728
C11 = 0.0945308285135471584337971560
C12 = 0.0353932598444637044274555968
C13 = 0.1117039095632449537712104547
C14 = 0.0628446339436074217634598509
C15 = 0.0292441621250913086718534294
C16 = 0.0092281011530926766426576544
C17 = 0.0300745174178397924391694395
C18 = 0.0108169840250198004550122836
C19 = 0.0494104631299506850362251657

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.07.2024, 16:41 


23/02/12
3357
Yadryara в сообщении #1646204 писал(а):
У меня правильная формула для количества всех, а я спрашивал именно про чистые.
Гипотеза Харди-Литтлвуда описывает только кортежи, состоящие из простых чисел, т.е. по-вашему - чистые. Эта формула правильная только для чистых.
Цитата:
Собственно, все базовые константы, видимо, можно вычислить единообразно. PARI и с этим здорово справляется:
А коэффициенты при базовых, как Вы нашли. В данной формуле число $9$?

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.07.2024, 17:20 
Аватара пользователя


29/04/13
8112
Богородский
vicvolf в сообщении #1646212 писал(а):
Гипотеза Харди-Литтлвуда описывает только кортежи, состоящие из простых чисел, т.е. по-вашему - чистые.

Х-м-м-м-м-м-м... :shock: :shock:

Вот уже в который раз замечаю, что Вы не понимаете о чём идёт речь. А ведь мы об этом чуть не всю тему говорим, начиная с 3-й страницы, где я приводил слова Jareka. Как так-то? :shock: А грязные кортежи не из простых что ли состоят??

Yadryara в сообщении #1643723 писал(а):
Код:
Over prime   0      1      2      3      4      5      6
Sredn       68    199    273    232    138     61     21
Fact        97    161    419     97     97     65     65

А что такое здесь Over prime ??

Ну Вы даёте...

vicvolf в сообщении #1646212 писал(а):
А коэффициенты при базовых, как Вы нашли. В данной формуле число $9$?

Ну 9-то я получил простым удвоением из формулы по Вашей же ссылке: https://mathworld.wolfram.com/PrimeConstellation.html

А вот другие множители:

Код:
Kortezh             Asymptotic HL-1 min ?

Length               Chisl.   Znamen.

                         1         0
02                      2         2

                         2         1
03                      3         2

                         3         1
04                      3         2
                 
                         4         11
05                     15         2
                       
                         5         13
06                     15         2

И задача в том, чтобы найти их до длины 19 включительно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 1076 ]  На страницу Пред.  1 ... 50, 51, 52, 53, 54, 55, 56 ... 72  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group