Не читал тему подробно, но скажу, что я целиком на стороне
EminentVictorians в этой дискуссии.
Все модели
, построенные в рамках ZFC, изоморфны друг другу.
Уточню: под моделью
я понимаю множество, на котором задана операция
, удовлетворяющее аксиомам Пеано, изложенным на языке множеств. То есть никакой схемы аксиом индукции, а одна аксиома: если подмножество
содержит единицу (или нуль, если угодно его включать в
) и вместе с каждым элементом
содержит следующий, то это подмножество совпадает с
.
Что касается нестандартных моделей и теоремы Левенгейма-Скулема, то это всё работает, но требует нестандартных моделей ZFC. Если считать, что есть одна "истинная" модель ZFC (а именно это предлагает
EminentVictorians), и не рассматривать нестандартные модели (несмотря на их теоретическое существование), и в частности не рассматривать вопрос, как их отличить от "истинной" - то все модели
будут изоморфны друг другу.
Вопросы
epros, мол как отличить утверждения ZFC, соответствующие арифметике Пеано, от всех других утверждений ZFC, мне кажутся, во-первых, странными, во-вторых, не важными. Аналогично, можно было бы сформулировать претензию к определению предела последовательности на языке
: а как вы отличите утверждения на языке
, соответствующие теоремам из математического анализа, от всех других утверждений с кванторами? Непонятно, почему этот вопрос вообще нужно рассматривать.
Что касается разной кодировки натуральных чисел на языке ZFC, здесь ситуация следующая. Натуральные числа - это мощности конечных множеств. Сказать, что "в таком-то множестве
элементов" - то же самое, что сказать "оно равномощно любому другому множеству из
элементов". Поэтому достаточно выделить (произвольным образом) множество из нуля элементов, из одного элемента, из двух элементов и т.д. и после этого предложение "в таком-то множестве
элементов" будет означать "множество равномощно такому-то из этих наших стандартных множеств". Так мы перевели утверждение о числе элементов на язык теории множеств, и после этого разумно считать, что само число
- это как раз и есть соответствующее стандартное множество (потому что утверждение о числе - это в точности утверждение о таком стандартном множестве). Выделить стандартные множества можно по-разному, но взять конечные ординалы, играющие ключевую роль в теории множеств - самый естественный путь.