Некоторые предварительные определения для памяти.
1. Лоренцево сокращениеПусть стержень покоится в инерциальной системе отсчёта K и расстояние между концами стержня, измеренное в К («собственная» длина стержня), равно L. Пусть далее стержень движется вдоль своей длины со скоростью v относительно некой другой (инерциальной) системы отсчёта K'. В таком случае расстояние L' между концами стержня, измеренное в системе отсчета K', составит
, где c — скорость света.
Величина
называется Лоренц-фактором.
Здесь v — скорость, c — скорость света в вакууме.
2. Релятиви́стское равноуско́ренное движе́ниеРелятиви́стское равноуско́ренное движе́ние (или релятивистское равномерно ускоренное движение) — такое движение объекта, при котором его собственное ускорение постоянно. Собственным ускорением называется ускорение объекта в сопутствующей (собственной) системе отсчета, то есть в инерциальной системе отсчёта, в которой текущая мгновенная скорость объекта равна нулю (при этом система отсчёта меняется от точки к точке). Примером релятивистского равноускоренного движения может быть движение тела постоянной массы под действием постоянной (в сопутствующей системе отсчёта) силы. Акселерометр, находящийся на равномерно ускоряющемся теле, не будет менять своих показаний.
Пусть стержень длиной L движется равноускоренно в собственной системе отсчета.
В лабораторной системе явное выражение скорости через время имеет вид:
, где t - время в лабораторной системе.
Если начальные координата и скорость равны 0, то уравнение примет вид
Скорость стержня под воздействием постоянной силы стремится к скорости света, но никогда её не превышает. В нерелятивистском пределе малых скоростей зависимость скорости от времени принимает форму
отвечающую классическому равноускоренному движению.
Перемещения стержня (начальные координата и скорость равны 0) то за время t (имеется в виду координатное время)
(https://ru.wikipedia.org/wiki/Релятивистское_равноускоренное_движение)
Или иначе (https://www.all-fizika.com/article/index.php?id_article=2192 Введение в теорию относительности, Жуков А.И., 1961)
3.
Парадокс БеллаВ версии Белла два космических корабля, вначале покоящиеся относительно некоторой инерциальной системы отсчёта (ИСО), соединяются натянутой до предела струной. В нулевой момент времени по часам соответствующей ИСО оба корабля начинают ускоряться с постоянным собственным ускорением g, измеряемым размещёнными на борту каждого корабля акселерометрами. Вопрос состоит в том, разорвётся ли струна?
В соответствии со мнением Девана и Берана, а также Белла, в системе отсчёта, в которой изначально корабли покоились, расстояние между ними будет оставаться неизменным, но длина струны будет испытывать релятивистское сокращение, так что в некоторый момент времени струна разорвётся.
Рассмотрим еще раз движущийся стержень. Согласно п.1 в неподвижной системе отсчета измеренная длина стержня будет меньше, чем в движущейся вследствие Лоренцева сокращения.
Даже если стержень будет двигаться равноускоренно в собственной системе отсчета, его длина все равно будет сокращаться с учетом Лоренц-фактора.
Возьмем вместо стержня тело в форме гантели - двух массивных шаров, соединенных тонкой перемычкой (нитью) и пусть это тело движется равноускоренно (разгоняется) в направлении совпадающем с его осью. Его длина также будет сокращаться с учетом Лоренц-фактора.
Даже если мы удалим перемычку между шарами, но при этом они также будут двигаться по тому же закону (равноускоренно) - расстояние между шарами также будет иметь Лоренцево сокращение при увеличении скорости, несмотря на отсутствие перемычки.
Таким образом невозможно выполнить условие, чтобы расстояние между телами оставалось неизменным с точки зрения неподвижного наблюдателя.Хотелось бы этот момент рассмотреть.