И.Г.Петровский, в своих классических работах ещё до ВМВ, ввел класс гиперболических уравнений
Вот и обозначим этот класс сокращением
.
Если строго гиперболическое уравнение является гиперболическим по классификации С. Б. К., то оно будет принадлежать к классу обозначаемому
.
Если строго гиперболическое уравнение содержит параболическое вырождение, то по классификации С. Б. К. оно будет параболического типа и может быть обозначено
.
Фактически предлагается переименование класса строго гиперболических уравнений в "уравнения класса Петровского". И строго гиперболическое уравнение с параболическим вырождением станет уравнением класса Петровского параболического типа.
Повторюсь. Преимущество грубой классификации в том, что она охватывает все случаи. Вы, я так понимаю, хотите сказать, что если ряд уравнений обладает некоторыми общими аналитическими свойствами, то они образуют некоторый класс. Да, разумеется, это так. Но эти классы, Вы продолжаете, не образуют единой классификации (или же она очень сложна). Это тоже верно. Но положив в основу классификации грубый принцип параболического вырождения, удаётся эту классификацию провести для всех линейных уравнений 2-го порядка. При этом, да, рассматриваемые Вами классы, несмотря на присущую им общность, будут разбиты на подклассы для инкорпорации в общую классификацию.
Или же определить класс Петровского так (в учебниках Т. С. и С. Б. К., класс нормальных гиперболических уравнений эквивалентен классу Петровского, не так ли?):
.
Проведу биологическую аналогию. Можно проводить классификацию животных по месту обитания: на суше, в воздухе, в воде. А можно по физиологии: млекопитающие, птицы, рыбы, насекомые и т. д. Эти две классификации друг другу мешают. Так как в воде обитают и млекопитающие, и рыбы, а на суше и млекопитающие, и насекомые и т. п.