Но существование многих других бесконечных сущностей конструктивизм не принимает именно потому, что это "чистая аксиома существования", без возможности привести пример конкретного объекта.
Нужно просто переименовать конструктивистское "существует" в "конструктивно", и получится всё стандартно - рассматриваем обычные множества, просто на них вводится предикат "конструктивно", и дальше его можно исследовать. Вся математика занимается чем-то подобным, это нормальная деятельность, только непонятно зачем перегружать термин "существование".
Его потенциальная бесконечность это когда мы берем его элементы по одному (то есть к выбранным элементам всегда можем добавить еще один), а его актуальная бесконечность это когда все его элементы мы берем сразу. То есть бесконечность одна, но к ней два разных подхода.
Формально мы вообще не "берем" элементы. Мы рассматриваем всякие функции, подмножества и т.д.
Жаргонно мы, конечно, говорим "возьмем множество, добавим к нему элемент, потом еще один" и т.д. Но формализуется это в последовательность множеств, а не в изменение одного множества.
Определение бесконечного множества -- сколько бы элементов мы из него ни взяли, всегда можно взять из него еще один элемент
Примерно так, только без "взяли". Множество
бесконечно, если для любого конечного множества
множество
непусто. Правда тут нужно сказать, что такое конечное множество, и внезапно оказывается, что для этого нам понадобится множество натуральных чисел:) (и это довольно существенный результат - не существует аксиоматики, которой удовлетворяют сколь угодно большие конечные множества, но не удовлетворяет никакое бесконечное)
Но вообще, как, видимо, намекает
Geen, я очень советую Вам это всё выкинуть из головы. Если хотите поразбираться с теорией множеств - возьмите книгу по ней, посмотрите, как вообще устроена работа с бесконечными множествами. Там нет никакой "потенциальной бесконечности" в смысле до-20-века, и это не просто так: она никому не нужна.
-- 26.07.2023, 18:32 --Хотелось бы, иначе все числа,кроме
станут периодическими дробями.
Ну вообще трансцедентных чисел довольно много еще:)
Но в любом случае, нужно разрешить в периоде либо нули, либо девятки (либо разрешить десятичные дроби с конечным числом знаков после запятой, но это совсем неудобно).