Абстрактно мыслить - это не только генерить образы объектов, идей, действий, но и проводить и
в прогностических и рабочих целях. Мелани Митчелл, бывшая учительница математики, а ныне профессор в науке о поведении сложных систем в Институте Санта-Фе, считает что ИИ никогда по-настоящему не будет похож на наш интеллект, пока не научится проводить аналогии.
Люди до сих пор не осознавали ключевую роль аналогий в мышлении. Ранний ИИ был основан на логике. Но в последние годы акцент сместился на обучение посредством множества примеров — считается, что ИИ сможет вывести из них знания о вещах, с которыми никогда прежде не сталкивался.
Исследователи надеялись, что способность к обобщению возникнет сама собой из набора данных, но этого не произошло. Можно показать глубокой нейросети миллионы изображений мостов, и тогда она, скорее всего, сумеет распознать следующее изображение моста. Но она не в состоянии сформировать на их основе образное представление о мосте и перенести его на выражения вроде «наводить мосты».
Нейросети не способны мыслить образно. Исследователи ИИ только сейчас начинают это понимать.
...Считается, что между входным и выходным слоями глубоких нейросетей творится магия. Люди думают, что если нейросети распознают породы собак лучше, чем люди — а это действительно так, — то они должны уметь проводить простые аналогии. Исследователи создают большой набор данных, на котором обучают свою нейросеть, а затем публикуют статью, утверждая, что им удалось достичь точности распознавания 80%. Тогда другие исследователи возражают, что этот набор данных имеет статистические свойства, позволяющие машине научиться решать задачи, не прибегая к обобщению. И так продолжается без конца.
Проблема в том, что если вы вынуждены обучать нейросеть на тысячах примеров, то это уже провал. Суть абстрагирования не в этом. Абстрактное мышление подразумевает использование метода few-shot learning, то есть обучения на малом числе примеров.
Многие возлагают большие надежды на Abstraction and Reasoning Corpus (ARC) — сложный набор задач, призванный тестировать машины на обладание «базовыми знаниями», которыми люди владеют от рождения. Мы знаем, что мир состоит из объектов, которые находятся в разном положении относительно друг друга. ARC показывает, например, некое сочетание цветов, форм и движения — «все квадраты одного цвета двигаются вправо, а все квадраты другого цвета — влево», а затем просит произвести нечто аналогичное с другими цветами. Закономерность такого рода доступна каждому человеку, исходя из базовых знаний.
— Если эти «базовые знания» врожденные, значит ли это, что для того, чтобы научиться проводить аналогии, ИИ должен обладать телом, подобным нашему?
— Это вопрос на миллион долларов. Исследователи ИИ не могут сойтись во мнении на этот счет.
Моя интуиция подсказывает мне, что нам не удастся научить ИИ проводить аналогии на одном уровне с людьми без придания ему тела. Обладание телом может иметь решающее значение, так как некоторые визуальные задачи требуют трехмерного мышления. А это требует опыта передвижения по миру и понимания пространственных связей между объектами.
https://kompyutery-programmy.ru/sovety/ ... eniya.html