2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Гравитация на релятивистских скоростях
Сообщение21.04.2023, 18:01 
Заслуженный участник


23/05/19
1154
amon в сообщении #1590558 писал(а):
$$
\begin{align}
\frac{v^2}{2}+\gamma\frac{2m}{r}=\operatorname{const}
\end{align}
$$

Тут минус только.

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение21.04.2023, 18:03 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
Dedekind в сообщении #1590564 писал(а):
Тут минус только.
Спасибо, уже поправил.

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение21.04.2023, 21:48 


04/08/21
307
amon

Спасибо за объяснения!

amon в сообщении #1590558 писал(а):
обозначим $r=x_1-x_2,$ получим
$$\ddot r=-\gamma\frac{2m}{r^2}.$$

Простите, а разве не должно быть либо
$$r=x_2-x_1; \text{ } \ddot r=-\gamma\frac{2m}{r^2}$$
либо
$$r=x_1-x_2; \text{ } \ddot r=\gamma\frac{2m}{r^2}$$
Это, конечно, не принципиально, просто немного сбивает с толку.

amon в сообщении #1590558 писал(а):
Сообразим, что ($v=\dot r$)

Это скорость относительно центра масс или относительно другого шара? Похоже на второе, просто хотел уточнить.

amon в сообщении #1590558 писал(а):
$$
\begin{align}
\ddot r&=\frac{d}{dt}v=\frac{dv}{dr}\frac{dr}{dt}=v'v=\frac{d}{dr}\left(\frac{v^2}{2}\right)\\
\frac{d}{dr}&\left(\frac{v^2}{2}-\gamma\frac{2m}{r}\right)=0\Rightarrow \frac{v^2}{2}-\gamma\frac{2m}{r}=\operatorname{const}
\end{align}
$$

Вот с этого момента для меня началась какая-то магия, и я перестал что-либо понимать. :) Почему здесь получается
$$\frac{d}{dt}v=\frac{d}{dr}\left(\frac{v^2}{2}\right)$$
Что вообще означает эта запись и как с этим работать? Моих скудных обрывков знаний не хватает, чтобы это понять. Где можно об этом почитать?

Я могу только предположить, что если в левой части этого уравнения производная от $v$ по времени $t$, то в правой части, вероятно, производная от $\dfrac{v^2}{2}$ по... расстоянию $r$? Не знал, что такое бывает. (Догадывался, что раз существует производная по времени, то должны быть и производные по чему-нибудь другому, но как-то не сталкивался.)

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение21.04.2023, 22:24 
Заслуженный участник
Аватара пользователя


26/02/14
559
so dna
need_to_learn в сообщении #1590602 писал(а):
Где можно об этом почитать?
Производная сложной функции.
На всякий случай лучше явно указывайте по какой переменной дифференцируем: $v'_t=v'_rv$ (чтоб не путаться).

Более подробно:
Сначала имеем скорость как некоторую функцию от времени: $v=f(t)$
Потом мы хотим найти ее как функцию от расстояния: $v=g(r)$
Но расстояние — это тоже некоторая функция от времени: $r=h(t)$, причем $h'_t=r'_t=v$

Таким образом имеем: $v'_t=\left(g(h(t))\right)'_t=g'_{h(t)}\cdot h'_t=v'_rv=\left(\frac{v^2}{2}\right)'_r$

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение21.04.2023, 22:40 


04/08/21
307
Rak so dna в сообщении #1590607 писал(а):
Производная сложной функции.

А-а, так вот что это такое! Как-то не узнал в гриме. Кажется, теперь ситуация начинает проясняться, спасибо.

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение21.04.2023, 22:52 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
need_to_learn в сообщении #1590602 писал(а):
Простите, а разве не должно быть либо
Должно. Дело в том, что обычно все это пишут в сферических координатах, где $r>0.$ Здесь $r$ может быть как положительным, так и отрицательным, и надо следить за знаками. Я слегка не уследил.
need_to_learn в сообщении #1590602 писал(а):
Это скорость относительно центра масс или относительно другого шара?
Это скорость сближения шаров (со знаком).
need_to_learn в сообщении #1590602 писал(а):
Почему здесь получается
$$\frac{d}{dt}v=\frac{d}{dr}\left(\frac{v^2}{2}\right)$$

$$v=v(r(t)),\,\frac{d}{dt}v(r(t))=\frac{dv(r)}{dr}\frac{dr}{dt}=\frac{dv(r)}{dr}v=v'(r)v(r)=
\frac{d}{dr}\left(\frac{v^2}{2}\right)$$

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 10:32 


04/08/21
307
Ещё раз спасибо за попытки растолковать мне эти тонкости.

К сожалению, с ходу въехать во все нюансы не получилось. Отложил, чтобы посмотреть с утра на свежую голову. И вот теперь у меня возникли вопросы по этим двум цитатам (для удобства их лучше рассмотреть вместе):
Rak so dna в сообщении #1590607 писал(а):
Сначала имеем скорость как некоторую функцию от времени: $v=f(t)$
Потом мы хотим найти ее как функцию от расстояния: $v=g(r)$
Но расстояние — это тоже некоторая функция от времени: $r=h(t)$, причем $h'_t=r'_t=v$

Таким образом имеем: $v'_t=\left(g(h(t))\right)'_t=g'_{h(t)}\cdot h'_t=v'_rv=\left(\frac{v^2}{2}\right)'_r$
amon в сообщении #1590611 писал(а):
$$v=v(r(t)),\,\frac{d}{dt}v(r(t))=\frac{dv(r)}{dr}\frac{dr}{dt}=\frac{dv(r)}{dr}v=v'(r)v(r)=
\frac{d}{dr}\left(\frac{v^2}{2}\right)$$

Здесь в первой цитате $v=r_t'$ и потому запись $v_r'v$ означает "производная от $v$ по $r$, умноженная на производную от $r$ по $t$". Но производная от $r$ по $t$ является функцией, зависящей от аргумента $t$. То есть, получается, что запись $v'_rv$ означает $v'(r)v(t)$.

Во второй же цитате $v=\dfrac{d}{dt}r$ и потому по логике это также $v(t)$, то есть функция, зависящая от аргумента $t$. Но при этом мы почему-то видим запись $v'(r)v(r)$. Как $v$ вдруг стала функцией от аргумента $r$, что за чудеса? Может, это опечатка? Ведь по логике здесь должно быть $v'(r)v(t)$.

Это был первый вопрос.

А второй вопрос — мне непонятен переход в первой цитате
$v'_rv=\left(\dfrac{v^2}{2}\right)'_r$
и переход во второй цитате
$v'(r)v(r)=\dfrac{d}{dr}\left(\dfrac{v^2}{2}\right)$

Откуда здесь вдруг берётся $\dfrac{v^2}{2}$ — вот этого я не понимаю. Это какое-то правило действий с производными, которое я успешно забыл, или что?

Допустим, $v'(r)v(r)$ это опечатка, и там должно быть $v'(r)v(t)$. Получается, можно внести $v(t)$ под знак производной $v'(r)$, если при этом разделить $v(t) / 2$? И затем можно умножить $v(r)v(t)$, как-то вдруг получив $(v(r))^2$ — или что здесь происходит?.. Это всё очень странно выглядит, если честно. Ничего, что мы перемножаем между собой функции $v$ от разных аргументов, это не мешает $v$ возводиться в квадрат?

Я долго пытался разобраться, но не вижу вообще никакой логики в том, что написано. Не за что уцепиться, я просто тупо не понимаю, почему вдруг всё так.

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 11:25 
Аватара пользователя


27/02/12
3893
need_to_learn в сообщении #1590633 писал(а):
А второй вопрос — мне непонятен переход в первой цитате
$v'_rv=\left(\dfrac{v^2}{2}\right)'_r$
и переход во второй цитате
$v'(r)v(r)=\dfrac{d}{dr}\left(\dfrac{v^2}{2}\right)$

Найдите в учебнике "производная сложной функции".

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 11:40 


04/08/21
307
В дополнение к предыдущему моему посту:

Кое-что начинает доходить. Правило нахождения производной произведения:
$(u \cdot v)' = (u)'v + u(v)'$
Если при этом $u=v$, то
$(v \cdot v)' = (v)'v + v(v)' = 2(v)'v$
Значит,
$\left( \dfrac{v^2}{2} \right)' = \dfrac{1}{2} \cdot 2(v)'v = v'v$

Тогда второй вопрос вроде бы снимается, становится понятен переход
$v'(r)v(r) = \dfrac{d}{dr} \left( \dfrac{v^2}{2} \right)$

Но по-прежнему непонятно, почему там $v'(r)v(r)$, когда по логике должно быть $v'(r)v(t)$.

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 11:59 
Заслуженный участник
Аватара пользователя


26/01/14
4845
need_to_learn в сообщении #1590639 писал(а):
Но по-прежнему непонятно, почему там $v'(r)v(r)$, когда по логике должно быть $v'(r)v(t)$.
Ну это одно и то же. Строго математически, $v(r)$ и $v(t)=v(r(t))$ это разные функции и стоило бы обозначать их разными буквами. Но на физическом уровне строгости эту разницу не учитывают, потому что из контекста понятно, что имеется в виду. Недостаток у такого подхода есть - например, становится непонятно, что такое $v(1)$ - это, грубо говоря, $v(r=1)$ или $v(t=1)$. Но если выражений вроде $v(1)$ не писать, всё читается и интерпретируется вполне однозначно.

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 12:41 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
need_to_learn в сообщении #1590633 писал(а):
Как $v$ вдруг стала функцией от аргумента $r$, что за чудеса?
Пример:
$$
\begin{align}
r(t)&=\frac{at^2}{2},\,v(t)=at\\
t&=\sqrt{\frac{2r}{a}}\\
v(r)&=\sqrt{2ar}\\
\frac{dv(t)}{dt}&=a\\
\frac{dv(r)}{dr}v(r)&=\frac{1}{2}\sqrt{\frac{2a}{r}}\sqrt{2ar}=a
\end{align}
$$Вот такая магия. Сначала сам удивился, потом привык ;)

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 13:20 
Заслуженный участник
Аватара пользователя


20/08/14
8506
Mikhail_K в сообщении #1590641 писал(а):
Недостаток у такого подхода есть - например, становится непонятно, что такое $v(1)$ - это, грубо говоря, $v(r=1)$ или $v(t=1)$.
В физике не принято записывать числовые значения размерных величин без указания единиц измерения, так что запись $v(1)$ в любом случае нежелательна. Даже если знать, что речь идет о функции $v(r)$, эта единичка - это один метр или один сантиметр? А в записях вида $v(1 \, \textbf{м})$ и $v(1 \, \textbf{с})$ понятно, ху из ху.

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 15:14 
Аватара пользователя


27/02/12
3893
need_to_learn в сообщении #1590639 писал(а):
Кое-что начинает доходить. Правило нахождения производной произведения:
$(u \cdot v)' = (u)'v + u(v)'$
Если при этом $u=v$, то
$(v \cdot v)' = (v)'v + v(v)' = 2(v)'v$
Значит,
$\left( \dfrac{v^2}{2} \right)' = \dfrac{1}{2} \cdot 2(v)'v = v'v$

Как-то не с той стороны доходит...
Нет, всё правильно, но не надо ехать из Одессы в Москву через Владивосток...
А случись вам находить производную от, скажем, $V^5 (взял наобум)...
Сильно вам поможет произведение?..
Ещё раз:
miflin в сообщении #1590638 писал(а):
Найдите в учебнике "производная сложной функции".

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение22.04.2023, 19:10 
Заслуженный участник
Аватара пользователя


26/02/14
559
so dna
need_to_learn в сообщении #1590633 писал(а):
Здесь в первой цитате...
need_to_learn в сообщении #1590633 писал(а):
Во второй же цитате...
В обоих цитатах написано одно и тоже просто разными обозначениями. Так, например $v'_t=\frac{dv}{dt}=\frac{d}{dt}v$

need_to_learn в сообщении #1590633 писал(а):
Здесь в первой цитате $v=r_t'$ и потому запись $v_r'v$ означает "производная от $v$ по $r$, умноженная на производную от $r$ по $t$". Но производная от $r$ по $t$ является функцией, зависящей от аргумента $t$. То есть, получается, что запись $v'_rv$ означает $v'(r)v(t)$.
Я потому и ввел обозначения, чтобы вы не путались:
Rak so dna в сообщении #1590607 писал(а):
Сначала имеем скорость как некоторую функцию от времени: $v=f(t)$
Потом мы хотим найти ее как функцию от расстояния: $v=g(r)$
Но расстояние — это тоже некоторая функция от времени: $r=h(t)$, причем $h'_t=r'_t=v$
Скорость $v$ может быть как функцией от времени $f(t)$ так и функцией от расстояния $g(r)$. Так уж вышло, что в наше уравнение не входит переменная $t$ сама по себе, зато входит переменная $r$ и это наталкивает на мысль искать $v$ именно как функцию от расстояния, то бишь в наших обозначениях — искать $g(r)$ вместо $f(t)$. Всё, выбор сделан, забываем, что скорость — функция от времени и окончательно считаем её функцией от расстояния. $\boxed{v=g(r)}$. Поэтому мы и можем положить, что $r'_t=v=g(r)$. Однако в это же уравнение входит ещё и ускорение, т.е. производная нашей скорости по времени, поэтому нам нужно и тут как-то избавиться от времени: ну просто применяем правило дифференцирования сложной функции $v'_t=(g(r))'_t=g'_r(r)r'_t=g'_r(r)g(r)$ Всё, больше переменной $t$ нигде не осталось и мы полностью переписали уравнение уже с новой переменной $r$. И с этой заменой уравнение легко решается.
Кстати, если тут все понятно — это хорошо, но вам ведь нужно найти $r(t)$, чтобы вычислить время через которое шары столкнутся...

 Профиль  
                  
 
 Re: Гравитация на релятивистских скоростях
Сообщение23.04.2023, 11:59 


04/08/21
307
amon в сообщении #1590558 писал(а):
$$
\begin{align}
\frac{d}{dr}&\left(\frac{v^2}{2}-\gamma\frac{2m}{r}\right)=0\Rightarrow \frac{v^2}{2}-\gamma\frac{2m}{r}=\operatorname{const}
\end{align}
$$

При начальной скорости $v_0(r) = 0 \text{ м/с}$ получается
$\operatorname{const} = - \gamma \dfrac{2m}{r_0}$
где $r_0$ это изначальное расстояние между телами.

Подставляем в формулу, получаем

$v(r) = \sqrt{4 \gamma m \left( \dfrac{1}{r} - \dfrac{1}{r_0} \right) } = 2 \sqrt{ \dfrac{\gamma m (r_0 - r)}{r_0r}} $

Только непонятно, что нам это даёт. :) Зависимость расстояния от времени как не получалось найти, так и не получается.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 85 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Bing [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group