2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение02.11.2022, 10:37 
Заслуженный участник
Аватара пользователя


20/08/14
8764
Всем спасибо!
Сегодня очень занят, завтра-послезавтра вернусь в тему.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение02.11.2022, 20:08 
Заслуженный участник


12/07/07
4539

(Я тут себе напомню)

Первая условно успешная попытка определения скорости звука в воздухе была предпринята Ньютоном. Он считал процесс изотермическим. После выполненных более точно измерений, оказалось, что скорость звука Ньютона заметно меньше экспериментально измеренной. Лаплас предположил, что процесс не изотермический, а адиабатический. Чуть позже Пуассон получил уравнение состояния для адиабатического процесса в случае идеального газа. По-видимому, используя этот результат, Лаплас (через 15 лет после своих первых исследований проблемы) получил скорость звука, менее отличающуюся от экспериментальных значений (по сравнению с Ньютоном). Краткая история этого вопроса имеется в книге Гельфер Я.М. История и методология термодинамики и статистической физики, 1987.

Детали работ старинной физики и математики мне не известны и, скорее всего, они не столь сегодня и важны. Уравнение распространения звука (малых колебаний) выводится (в современных курсах физики) в теории упругости/ФТТ и гидродинамике/акустике. [На ФФ раньше иногда вывод уравнения Эйлера и уравнения неразрывности был в первом семестре во вводном курсе Механика (в курсе Общей физики). Аналогично было и на технических специальностях. Но были и варианты, когда в первом семестре не читали элементы гидродинамики.] Поскольку тема, вроде бы, о скорости звука в воздухе, то рассмотрим «гидродинамический вывод» на «физическом уровне строгости».

Итак, предварительные исследования показали, что скорость звука $c$ намного больше скорости движения частиц воздуха. Это заложено в следующий вывод и затем может быть проверено. Таким образом, $\mathbf{v}$ малые величины и произведение таких малых величин или произведение таких величин на другие малые будет бесконечно малыми более высокого порядка и ими можно пренебречь.
$p = p_0 + p’$, $\rho = \rho_0 + \rho’$.
Здесь $p_0$ и $\rho_0$ — давление и плотность в невозмущённой среде; $p’$, $\rho’$ — малые отклонения. Линеаризуя уравнение неразрывности и уравнение Эйлера, получаем
$$\frac {\partial \rho’}{\partial t} + \rho_0\bar {\nabla}\cdot \mathbf{v} = 0, \qquad (1)$$$$\frac {\partial \mathbf{v}} {\partial t} + \frac {\nabla p’}{\rho_0} = 0. \qquad (2)$$Эти два уравнения содержат переменные $\rho’$, $\mathbf{v}$ и $p’$. Если выразить в (1) $\rho’$ через $p’$, то два уравнения будут содержать только $\mathbf{v}$ и $p’$.
При изоэнтропическом (адиабатическом) изменении состояния $p’ = (\partial p/\partial \rho)_S \rho’$. Здесь значение производной вычисляется в точке $\rho_0$. Таким образом (1) преобразуется в
$$\frac {\partial p’}{\partial t} + \rho_0 \left(\frac{\partial p}{\partial \rho}\right)_S \bar {\nabla}\cdot \mathbf{v} = 0. \qquad (1’)$$Далее вводится потенциал скорости $\mathbf{v} = {\nabla} \varphi$. Тогда (2) преобразуется в (2"), а затем (1') в (1")
$$ p’ = -\rho_0 \frac {\partial \varphi}{\partial t}, \qquad (2’’)$$$$ \frac {\partial^2 \varphi}{\partial t^2}  -c^2 \Delta \varphi=0. \qquad (1’’)$$(1") — волновое уравнение, $c = \sqrt {\left(\frac{\partial p}{\partial \rho}\right)_S}$ — скорость звука.

Это я себе ответил на вопрос
GAA в сообщении #1568604 писал(а):
Но вот какие значения $p$ и $\rho$ для определения скорости нужно подставлять?
Понятно, что в книжках и лекциях после линеаризации приговаривают, что далее индексы 0 мы опустим и, возможно, ТС об этом знает, но я при чтении начального сообщения оговорки не заметил и решил себе напомнить.

Несмотря на то, что исторически выражение для $(\partial p/\partial \rho)_S$ было получено для идеального газа, в классической термодинамике значение производной получается в «общем» случае
$$\left(\frac{\partial p}{\partial \rho} \right)_S = \frac {C_p}{C_v}\left(\frac {\partial p}{\partial \rho}\right)_T.$$(В данном случае, возможно, это избыточная общность, но таков подход классической термодинамики.) Далее можно экспериментально измерить величины, входящие в правую часть, и получить левую. Или, если имеется достаточно точная модель для среды, найти теоретические значения. А в учебных курсах в качестве среды рассматривается идеальный газ.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение02.11.2022, 21:45 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora

(А можно и так)

GAA в сообщении #1568734 писал(а):
$$\frac {\partial \rho’}{\partial t} + \rho_0\bar {\nabla}\cdot \mathbf{v} = 0, \qquad (1)$$$$\frac {\partial \mathbf{v}} {\partial t} + \frac {\nabla p’}{\rho_0} = 0. \qquad (2)$$
Перепишем $(2)$ в виде
$\nabla p'+\frac{\partial}{\partial t}(\rho_0\mathbf v)=0$
Подставим $p'=c^2\rho'$, где $c^2=\left(\frac{\partial p}{\partial \rho}\right)_S$:
$c^2\nabla \rho'+\frac{\partial}{\partial t}(\rho_0\mathbf v)=\mathbf 0$
Возьмём от обеих частей дивергенцию. Слева в первом слагаемом $\nabla\cdot\nabla \rho'=\Delta\rho'$, а во втором $\nabla$ и $\frac{\partial}{\partial t}$ можно переставить:
$c^2\Delta \rho'+\frac{\partial}{\partial t}\nabla\cdot (\rho_0\mathbf v)=0$
Второе слагаемое преобразуем с учётом $(1)$:
$c^2\Delta \rho'-\frac{\partial^2}{\partial t^2}\rho'=0$

Этот вариант хорош тем, что не требует введения потенциала $\varphi$ и даёт волновое уравнение для изменения плотности — величины понятной, которую можно пощупать.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение02.11.2022, 23:06 
Заслуженный участник


20/04/10
1925

(Просто Иридий Александрович нас учил.)

Изображение

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение02.11.2022, 23:46 
Заслуженный участник


12/07/07
4539

(Об этой теме в книге Квасникова)

В первом томе (второго издания) книги Квасников И.А. «Термодинамика и статистическая физика» в уравнении Эйлера нет слагаемого $(\mathbf{u}\cdot \mathbf{\nabla})\mathbf{u}$ (ещё до линеаризации).

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение03.11.2022, 01:23 
Заслуженный участник


20/04/10
1925

(Оффтоп)

GAA
Действительно, спасибо за замечание.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение05.11.2022, 19:31 
Заслуженный участник
Аватара пользователя


20/08/14
8764
Итак, отчитываюсь.
Что понятно к настоящему моменту.
Anton_Peplov в сообщении #1568554 писал(а):
Из физических соображений лектор заключает, что
$$
v^2 \approx \frac{\Delta p}{\Delta \rho}
$$
где $v$ - скорость звука, $\Delta p$ и $\Delta \rho$ - малые приращения давления и плотности в тонком вертикальном слое газа.

Дальше лектор замечает, что в обычных условиях распространение звука адиабатное: за период звуковой волны теплообмен между участками сжатия и разрежения не успевает произойти. И вот тут случается математическое чудо № 1. Устремляя приращения в предыдущей формуле к нулю, лектор записывает:
$$
v^2 = \left ( \dfrac{\partial p}{\partial \rho} \right )_s
$$
где $s$ - постоянная энтропия.
Как указали warlock66613 и amon, давление можно записать как функцию двух переменных, плотности и энтропии: $p = p(s, \rho)$. Запись
$$
v^2 = \left ( \dfrac{\partial p}{\partial \rho} \right )_s
$$
означает, что мы берем от функции $p = p(s, \rho)$ частную производную по $\rho$ при постоянном $s$. Одну переменную фиксируем, остается одна, можно брать частную производную. Все правильно. Мое непонимание коренилось в том, что я то ли накрепко забыл, то ли никогда не знал, что $p = p(s, \rho)$ есть уравнение состояния.

Что касается второго вопроса.
Anton_Peplov в сообщении #1568554 писал(а):
Почему отношение дифференциалов функции нескольких переменных приравнивается к частной производной? В учебниках анализа специально подчеркивается, что частная производная - это не дробь, значок $\partial$ в числителе не имеет никакого смысла в отрыве от знаменателя, сокращения "общих множителей числителя и знаменателя" не работают, и т.д.
Покопавшись в старом добром Фихтенгольце, я обнаружил, что мем "частная производная - это не дробь" не совсем корректен. На самом деле это таки дробь. Так, для функции $z = f(x, y)$ верно
$$
 \frac{\partial f}{\partial x} = \frac{d_x f}{d x}
$$
где $d_x f$ - частный дифференциал функции $f$ по $x$.

Хештэг #ЭтоНеДроби не о том, что частную производную нельзя представить как отношение дифференциалов. Он о том, что, скажем, в выражениях $\dfrac{\partial p}{\partial V}$ и $\dfrac{\partial V}{\partial T}$ символ $\partial V$ имеет разные значения. Расписав частные производные в виде отношения дифференциалов, имеем
$$
\dfrac{\partial p}{\partial V} = \dfrac{d_V p}{\Delta V}
$$
(в числителе $V$ - нижний индекс при $d$, отображается не очень удачно) и
$$
\dfrac{\partial V}{\partial T} = \frac{d_T V}{\Delta T}
$$
Поэтому в выражении $\dfrac{\partial p}{\partial V}\cdot\dfrac{\partial V}{\partial T}$ нет сокращающихся множителей.

Что ж, раз частную производную можно выразить как отношение дифференциалов (главное знать, каких), то понятно, что лектор имел право так сделать.

Что касается понятия полной частной производной, я взял его из учебника Ильина и Позняка. В учебниках Фихтенгольца и Зорича я этого понятия не нашел. Дифференцирование сложной функции и инвариантность формы первого дифференциала, конечно, везде есть. Из них, по идее, должна следовать корректность замен переменных а-ля выполненные выше amon.

Про теорему, сформулированную Padawan, я еще подумаю.

Отдельное спасибо GAA, svv и lel0lel за замечания по физической стороне вопроса. Мой лектор обошел вниманием вопрос, почему мы можем применять к неравновесному процессу уравнение, выведенное для равновесной термодинамики. Курс физики, который нам читали, был очень обзорным и сжатым, так что такие вещи по необходимости заметались под ковер.

Что касается мысли
Mihr в сообщении #1568562 писал(а):
Тут надо сообразить, что, поскольку макроскопические параметры газа не являются независимыми (они связаны между собой через уравнение состояния газа, в случае идеального газа это - уравнение Менделеева - Клапейрона), то изменить лишь один параметр, не меняя все остальные, не удастся. Поэтому говорить о частных производных в точности так, как в математике, в термодинамике - бессодержательно. Можно говорить лишь о производной одного параметра по другому в том или ином процессе.
Меня тоже какое-то время мучил вопрос, как мы можем брать частные производные по любой из переменных $p, V, T$ из уравнения Менделеева-Клапейрона $pV = \nu RT$, если нельзя варьировать один из параметров, оставляя неизменными остальные. Я успокоил себя мыслью, что не всякая частная производная обязана иметь физический смысл. Тут как с методом комплексных амплитуд: физический смысл обязана иметь конечная формула задачи, а промежуточные математические выкладки не обязаны. Возможно, я и ошибаюсь. Буду думать дальше.

Всем спасибо за помощь. Возможно, еще вернусь к этой теме, если надумаю новые вопросы.

-- 05.11.2022, 19:54 --

warlock66613 в сообщении #1568559 писал(а):
Возможные состояния образуют двумерную поверхность в пятимерном пространстве $p, \rho, T, s, \epsilon$ ($\epsilon$ — энергия (плотность)). Любая пара из перечисленных величин может быть использована в качестве координат точки на этой поверхности, то есть состояния. <...>
[Из сказанного выше должно быть очевидно, почему естественный язык для термодинамики — это язык дифференциальных форм. Частные производные — это координатная возня.]
Подскажете хорошую книгу по математической термодинамике, где обо всем этом можно почитать?
Это мне навырост. У меня пока не тот уровень. Но будет тот.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение05.11.2022, 20:05 
Заслуженный участник


20/04/10
1925
Anton_Peplov в сообщении #1569023 писал(а):
Что касается мысли
Mihr в сообщении #1568562 писал(а):
Тут надо сообразить, что, поскольку макроскопические параметры газа не являются независимыми (они связаны между собой через уравнение состояния газа, в случае идеального газа это - уравнение Менделеева - Клапейрона), то изменить лишь один параметр, не меняя все остальные, не удастся. Поэтому говорить о частных производных в точности так, как в математике, в термодинамике - бессодержательно. Можно говорить лишь о производной одного параметра по другому в том или ином процессе.
Меня тоже какое-то время мучил вопрос, как мы можем брать частные производные по любой из переменных $p, V, T$ из уравнения Менделеева-Клапейрона $pV = \nu RT$, если нельзя варьировать один из параметров, оставляя неизменными остальные. Я успокоил себя мыслью, что не всякая частная производная обязана иметь физический смысл. Тут как с методом комплексных амплитуд: физический смысл обязана иметь конечная формула задачи, а промежуточные математические выкладки не обязаны. Возможно, я и ошибаюсь. Буду думать дальше.

Честно говоря, я не понимаю сообщение Mihr. Разве нам приходится когда-либо вычислять, например, такую частную производную $\left(\frac{\partial W}{\partial V}\right)_{p,T,N}$? Нет. Таким образом, есть только такие производные, которые можно измерить физическим способом. Создать систему, в которой требуемые величины фиксированы, и сообщить малое изменение варьируемуму параметру. То есть, никогда не встречается что-то, что нужно воспринимать просто как промежуточную математическую конструкцию.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение05.11.2022, 21:12 
Заслуженный участник
Аватара пользователя


20/08/14
8764
lel0lel в сообщении #1569028 писал(а):
Таким образом, есть только такие производные, которые можно измерить физическим способом. Создать систему, в которой требуемые величины фиксированы, и сообщить малое изменение варьируемому параметру.
Допустим, мы зафиксировали объем и давление газа. А теперь поставим снизу нагреватель и чуть-чуть подогреем газ. Сообщим температуре малое изменение. Давление точно останется постоянным, а не испытает малое изменение вслед за температурой?

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение05.11.2022, 21:15 
Заслуженный участник
Аватара пользователя


18/09/14
5283
lel0lel в сообщении #1569028 писал(а):
Честно говоря, я не понимаю сообщение Mihr.

А мне показалось, что мы говорили об одном и том же.
lel0lel в сообщении #1568614 писал(а):
Можно назвать это условной производной, жаль такой термин не прижился.

Кстати, хорошее замечание. Так ведь и я о том же:
Mihr в сообщении #1568562 писал(а):
Можно говорить лишь о производной одного параметра по другому в том или ином процессе.

А процесс описывается каким-то условием, обычно уравнением. Можно говорить "производная в квазистационарном адиабатическом процессе", а можно - "производная при условии $S = \operatorname{const}$". Это ведь одно и то же, не так ли?
lel0lel в сообщении #1569028 писал(а):
Разве нам приходится когда-либо вычислять, например, такую частную производную $\left(\frac{\partial W}{\partial V}\right)_{p,T,N}$? Нет.

Ну, а я разве не о том же?
В общем, не берите в голову. Возможно, у меня весьма неудачные формулировки. Давайте, как говорится, замнём для ясности.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение05.11.2022, 21:20 
Заслуженный участник


20/04/10
1925
Anton_Peplov
Тут неизвестно, что испытает изменение, то ли давление, то ли объём сосуда и, кстати, его целостность) Если серьёзно, то мы не можем создать систему в которой фиксированы давление и объём и, при этом, есть возможность изменить температуру. Правда это при условии, что других параметров у нас нет, например, напряжённости полей. То есть, если речь об идеальном газе с неизменным числом частиц. Но разве нам встречаются такие производные в термодинамике?

-- Сб ноя 05, 2022 21:24:02 --

Mihr
Прошу прощения, я не всегда читаю все сообщения в теме. Вот опять наступил на грабли. Просто, в контексте приведенной Anton_Peplov цитаты, мне подумалось, что речь немного о другом. Сейчас всё прочёл.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение05.11.2022, 22:39 
Заслуженный участник
Аватара пользователя


20/08/14
8764
lel0lel в сообщении #1569039 писал(а):
Но разве нам встречаются такие производные в термодинамике?
Пожалуй, нет, не встречаются. Из трех параметров $p, V, T$ мы всегда можем зафиксировать один и следить, как меняется другой по мере изменения третьего.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение05.11.2022, 23:29 
Заслуженный участник
Аватара пользователя


18/09/14
5283
Anton_Peplov в сообщении #1569054 писал(а):
Пожалуй, нет, не встречаются. Из трех параметров $p, V, T$ мы всегда можем зафиксировать один и следить, как меняется другой по мере изменения третьего.

В принципе, можно рассматривать и термодинамические системы с переменным числом частиц. Иногда так и приходится делать: если в задаче идёт речь об испарении, конденсации либо утечке газа через малое отверстие. Тогда состояние газа описывается четырьмя параметрами (в качестве четвёртого параметра добавляется число частиц либо количество вещества). И здесь уже можно фиксировать любые два параметра из четырёх. Более того, можно фиксировать не только названные параметры, но и какие-либо функции от них (более или менее сложные).

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение06.11.2022, 01:55 
Заслуженный участник


12/07/07
4539
Anton_Peplov в сообщении #1569023 писал(а):
Подскажете хорошую книгу по математической термодинамике, где обо всем этом можно почитать?
Сомневаюсь, что хорошая (и в каком смысле хорошая: для математиков, физиков или инженеров?), но зато в свободном доступе. На странице Зорич Владимир Антонович есть ссылки на
На странице есть ссылки и на другие материалы В.А. Зорича.

 Профиль  
                  
 
 Re: Почему физики так обращаются с дифференциалами?
Сообщение06.11.2022, 03:09 
Заслуженный участник


12/07/07
4539
По поводу пяти переменных ($E$, $P$, $S$, $T$, $V$), см. в [3] на с. 18.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 35 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Rrraaa


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group