От внешнего давления, форма поверхности жидкости, кажется, не зависит.
Все правильно. Не зависит. Форма поверхности по-человечески получается, если приравнять скачек давления под изогнутой поверхностью, равный

(

и

- главные радиусы кривизны) дополнительному давлению, возникающему из-за не плоскостности жидкости

Получится дифур, из которого без особых затей все и находится. Этот скачек не зависит от внешнего давления.
Такие олимпиадные задачи для школьников напоминают мне незапамятные времена, когда я учился в младших классах школы, где был такой предмет - арифметика. Там предлагали решать текстовые задачи не используя уравнений. Особо ушлые самостоятельно изучили сакральную тайну "решения с иксами" и навострились переводить алгебраическое решение в "арифметическое". Вообще, IMHO, хорошая олимпиадная задача - это задача, заставляющая ломать голову независимо от образовательного бэкграунда.