Равенство интегралов Лебега - это отношение эквивалентности.
Ну только отношение эквивалентности для
всё-таки другое:)
Что оно разбивает множество на классы - теорема о разбиении по отношению эквивалентности.
А как формулируется? "Если на множестве есть отношение эквивалентности, то существует множество, состоящее из классов эквивалентности"? ИМХО как-то громко называть это "теоремой".
Что потом из каждого класса можно выбрать по одному представителю - аксиома выбора
А зачем нам одновременно выбирать из класса по представителю? Всю арифметику, операторы и т.д. можно определять сразу на классах (доказывая, что соответствующие преобразования уважают классы, но это в любом случае придется делать).