2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11 ... 42  След.
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение13.03.2021, 18:55 


23/02/12
3107
Dmitriy40 в сообщении #1509055 писал(а):
Доказано?! Там каша из утверждений с ошибками, их исправлений и т.д. Ну и похожая на эту формула там "доказана" лишь с добавлением $O()$
Эта формула с уточняющим остаточным членом. Я же привел формулу асимптотики без остаточного члена. Конечно это не готовая статья, а только обсуждения. На форуме нельзя ссылаться на свои статьи. Но у меня есть статьи на эту тему.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение14.03.2021, 16:56 


23/02/12
3107
Yury_rsn писал(а):
Можно уточнить по этой цитате:
Цитата:
На основании асимптотического закона простых чисел доказано topic140635.html , что справедлива формула:
$$\sum_{p \leq x} f(p) \sim \sum_{k \leq x} \frac {f(k)}{\ln(k)},$$
если ряд $\sum_{p=2}^{\infty} f(p)$ - расходится и $f(p)$ растет медленнее показательной функции.


- есть ли более точные условия на функцию f(p)
или f(k), и что зависит от ее вида?
Остаточный член - зависит?
Из требований к $f(p)$ можно добавить, что она должна быть монотонной и иметь производную не равную нулю на интервале $[2,x)$.

Остаточный член разложения зависит от точности в асимптотическом разложении $\pi(x)$. Например, если $\pi(x)=\frac {x}{\ln(x)}+O(\frac{x}{\ln^2(x)})$, то в наших примерах получим:
$$\sum_{p \leq x}\ln(p)=x+O(\frac{x}{\ln(x)}).$$
$$\sum_{p \leq x} \frac {1}{p}=\ln\ln(x)+O(1).$$

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение14.03.2021, 22:37 


01/07/19
244
vicvolf в сообщении #1509212 писал(а):
Из требований к $f(p)$ можно добавить, что она должна быть монотонной и иметь производную не равную нулю на интервале $[2,x]$.

Остаточный член разложения зависит от точности в асимптотическом разложении $\pi(x)$.


Для любой $f(p)$ зависит только от $\pi(x)$ ?
Интересует - как именно от вида $f(p)$ зависит остаточный член.
Если $f(p)$ - это полином, например.
Или имеет смысл понимать под $f(p)$ функции только определенного вида?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 10:42 


23/02/12
3107
Yury_rsn в сообщении #1509263 писал(а):
vicvolf в сообщении #1509212 писал(а):
Из требований к $f(p)$ можно добавить, что она должна быть монотонной и иметь производную не равную нулю на интервале $[2,x]$.

Остаточный член разложения зависит от точности в асимптотическом разложении $\pi(x)$.


Для любой $f(p)$ зависит только от $\pi(x)$ ?
Интересует - как именно от вида $f(p)$ зависит остаточный член.
Если $f(p)$ - это полином, например.
Или имеет смысл понимать под $f(p)$ функции только определенного вида?

Нет $f(p)$ может быть произвольной функцией, удовлетворяющей перечисленным условиям.

Используем более точную формулу для $\pi(x)$:

$$\pi(x)=\int_2^x {\frac {dt}{\ln(t)}}+O(\frac {x}{e^{c\ln^{1/2}(x)}})),$$ где с - постоянная.

В этом случая справедлива общая формула:

$$\sum_{p \leq x}{f(p)}=\int_2^x {\frac {f(t)dt}{\ln(t)}}+O(\frac {|f(x)|x}{e^{c\ln^{1/2}(x)}})+O(\int_2^x{\frac {t|f'(t)|dt}{e^{c\ln^{1/2}(t)}}}).$$

Примеры использования данной формулы:

1. $\sum_{p \leq x}{\ln(p)}=\int_2^x {\frac {\ln(t)dt}{\ln(t)}}+O(\frac {\ln(x)x}{e^{c\ln^{1/2}(x)}})+O(\int_2^x{\frac {dt}{e^{c\ln^{1/2}(x)}}})=x+O(\frac {\ln(x)x}{e^{c\ln^{1/2}(x)}})$.


2.$\sum_{p \leq x}{\frac {\ln(p)}{p}}=\int_2^x {\frac {\ln(t)dt}{t\log(t)}}+O(\frac {\ln(x)x}{xe^{c\ln^{1/2}(x)}})$$+O(\int_2^x{\frac {tdt}{t^2e^{c\ln^{1/2}(t)}}})+O(\int_2^x{\frac {t\ln(t)dt}{t^2e^{c\ln^{1/2}(t)}}})=\ln(x)+O(1)$

3.$\sum_{p \leq x}{p^{\alpha}}=\int_2^x {\frac {t^{\alpha}dt}{\ln(t)}}+O(\frac{x^{\alpha+1}}{e^{c\ln{1/2}(x)}})+O(\int_2^x{\frac{t^{\alpha}dt}{e^{c\ln{1/2}(t)}})=\int_2^x {\frac {t^{\alpha}dt}{\ln(t)}}}+O(\frac{x^{\alpha+1}}{e^{c\ln{1/2}(x)}}),$ где $\alpha >-1$.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 13:28 


01/07/19
244
vicvolf в сообщении #1509303 писал(а):

$$\sum_{p \leq x}{f(p)}=\int_2^x {\frac {f(t)dt}{\ln(t)}}+O(\frac {|f(x)|x}{e^{c\ln^{1/2}(x)}})+O(\int_2^x{\frac {t|f'(t)|dt}{e^{c\ln^{1/2}(t)}}}).$$

Красивая формула

А можно ли с ее помощью более точно оценить количество простых чисел на различных интервалах?
Например, на отрезке между x и y
$$\sum_{p \leq y}{f(p)} - \sum_{p \leq x}{f(p)}$$

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 15:21 


23/01/07
3415
Новосибирск
Dmitriy40
У меня к Вам вопрос-предложение по расположению взаимно простых в примориалах.
Если взять дробь: $\dfrac {\varphi_{p_{r}\#}}{p_{r}\#}$ и сократить общие множители в числителе и знаменателе, то будет ли на каждом участке примориала, равном полученному знаменателю, взаимно простых чисел ровно столько, сколько в полученном числителе? Или такой равномерности нет?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 15:22 


23/02/12
3107
Yury_rsn в сообщении #1509334 писал(а):
vicvolf в сообщении #1509303 писал(а):

$$\sum_{p \leq x}{f(p)}=\int_2^x {\frac {f(t)dt}{\ln(t)}}+O(\frac {|f(x)|x}{e^{c\ln^{1/2}(x)}})+O(\int_2^x{\frac {t|f'(t)|dt}{e^{c\ln^{1/2}(t)}}}).$$

Красивая формула

А можно ли с ее помощью более точно оценить количество простых чисел на различных интервалах?
Например, на отрезке между x и y
$$\sum_{p \leq y}{f(p)} - \sum_{p \leq x}{f(p)}$$

Если подставить в эту формулу $f(p)=1$, то получим

$$\pi(x)=\int_2^x {\frac {dt}{\ln(t)}}+O(\frac {x}{e^{c\ln^{1/2}(x)}}))$$

Эта формула предназначена не для определения асимптотики количества простых чисел, а для определения асимптотики суммы функций простых чисел.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 17:15 
Заслуженный участник


20/08/14
11061
Россия, Москва
Батороев в сообщении #1509352 писал(а):
Dmitriy40
У меня к Вам вопрос-предложение по расположению взаимно простых в примориалах.
Если взять дробь: $\dfrac {\varphi_{p_{r}\#}}{p_{r}\#}$ и сократить общие множители в числителе и знаменателе, то будет ли на каждом участке примориала, равном полученному знаменателю, взаимно простых чисел ровно столько, сколько в полученном числителе? Или такой равномерности нет?
Начнём с того что я не понимаю записи $\varphi_{p_{r}\#}$. Что сложного писать функцию как обычно $\varphi(p_{r}\#)$ если это вообще так?
Далее, по определению $\varphi(p\#)=\prod\limits_{x\le p} (x-1)$ (разумеется для простых $p$ и $x$). При подстановке в вашу дробь у числителя и знаменателя не будет общих множителей кроме $2$ потому что в числителе произведение простых минус 1, которые гарантированно не равны ни одному простому в знаменателе кроме $2$.
Но даже хорошо, пусть сократили на $2$, и в числителе и в знаменателе остались очень большие числа.
Но дальше снова не понимаю выражение "на каждом участке примориала, равном полученному знаменателю," - что за участок праймориала? Две его половинки что ли? Которые $[1\ldots p\#/2),[p\#/2\ldots p\#)$? Почему сразу так не сказать?!
Далее, "взаимно простых чисел ровно столько," - взаимно простых?! Может взаимно простых с $p\#$ или с $p\#/2$? А то взаимно простых там уж точно не меньше $(\pi(p\#/2))^2$, что очень много и явно не то ...
Ну и с равномерностью тоже вопросы, если частей праймориала больше одной, то все ли они (число взаимно простых в них) должны равняться числителю или хотя бы некоторые или как?

Короче не буду я за вас доформулировать условие, постарайтесь уж сами. Как получите понятное и однозначное условие, программу я могу написать и проверить, для не слишком больших чисел (типа до десятков миллионов (что всего порядка $19\#\ldots 23\#$) простые ещё неплохо обрабатываются, а дальше желательно только готовыми функциями типа $\varphi(x), \pi(x), x\#, x!,\gcd()$).

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 18:11 


31/12/10
1555
Dmitriy40
Просьба.
Среди вычетов ПСВ по модулю $M=23\#$ есть по крайней мере
6 разностей между соседними вычетами, равными $d=40$.
Не могли бы найти первые вычеты этих разностей. Спасибо.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 18:42 
Заслуженный участник


20/08/14
11061
Россия, Москва
vorvalm в сообщении #1509384 писал(а):
Dmitriy40
Просьба.
Среди вычетов ПСВ по модулю $M=23\#$ есть по крайней мере
6 разностей между соседними вычетами, равными $d=40$.
Не могли бы найти первые вычеты этих разностей. Спасибо.

Не знаю почему, но нашлось больше (код на PARI/GP):
Код:
? pr=vecprod(primes([1,23]));pp=1;forstep(p=3,pr-1,2, if(gcd(p,pr)>1,next); if(p-pp==40,print1(pp,"  "));pp=p)
20332471  24686821  36068191  65767861  82370089  97689751  125403079  140722741  157324969  187024639  198406009  202760359
time = 1min, 3,868 ms.
Выведено меньшее из двух чисел.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 19:10 


21/05/16
4292
Аделаида
Dmitriy40 в сообщении #1509374 писал(а):
При подстановке в вашу дробь у числителя и знаменателя не будет общих множителей кроме $2$ потому что в числителе произведение простых минус 1, которые гарантированно не равны ни одному простому в знаменателе кроме $2$.

Ну, вообще-то, нет. Скажем, $\varphi(210)=1\times2\times4\times6=48$ и $210$ имеют общий множитель $6$.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 19:20 
Заслуженный участник


20/08/14
11061
Россия, Москва
kotenok gav в сообщении #1509397 писал(а):
Ну, вообще-то, нет. Скажем, $\varphi(210)=1\times2\times4\times6=48$ и $210$ имеют общий множитель $6$.
Оп-па! Как интересно. Тут я явно лоханулся. Спасибо. Даже проверил, да, их таких много ... и разных ...
код: [ скачать ] [ спрятать ]
Используется синтаксис Text
2#: gcd=1
3#: gcd=2
5#: gcd=2
7#: gcd=6
11#: gcd=30
13#: gcd=30
17#: gcd=30
19#: gcd=30
23#: gcd=330
29#: gcd=2310
31#: gcd=2310
37#: gcd=2310
41#: gcd=2310
43#: gcd=2310
47#: gcd=53130
53#: gcd=690690
59#: gcd=20030010
61#: gcd=20030010
67#: gcd=20030010
71#: gcd=20030010
73#: gcd=20030010
79#: gcd=20030010
83#: gcd=821230410
89#: gcd=821230410
97#: gcd=821230410
Тогда задача становится чуточку более понятной.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 19:22 


31/12/10
1555
Dmitriy40
Большое спасибо.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 19:49 


23/01/07
3415
Новосибирск
Dmitriy40 в сообщении #1509374 писал(а):
которые гарантированно не равны ни одному простому в знаменателе кроме $2$.

Причем здесь равенство? Я писал про множители, например: $7-1=2\cdot 3$ прекрасно делится на два простых.
Ладно, вопрос снимаю.

-- 15 мар 2021 23:49 --

Dmitriy40 в сообщении #1509374 писал(а):
которые гарантированно не равны ни одному простому в знаменателе кроме $2$.

Причем здесь равенство? Я писал про множители, например: $7-1=2\cdot 3$ прекрасно делится на два простых.
Ладно, вопрос снимаю.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 20:34 
Заслуженный участник


20/08/14
11061
Россия, Москва
Батороев
Да указали уже выше что ошибся в этом.

Если я правильно понял задачу (а уж совпадает это с вашим или не совсем мне неизвестно), то нет, количества числителю равны не всегда:
Используется синтаксис Text
3#=6/2, 1/3: nums=1..1
5#=30/2, 4/15: nums=4..4
7#=210/6, 8/35: nums=8..8
11#=2310/30, 16/77: nums=15..17 -- не все равны
13#=30030/30, 192/1001: nums=190..194 -- не все равны
17#=510510/30, 3072/17017: nums=3072..3072
19#=9699690/30, 55296/323323: nums=55296..55296
23#=223092870/330, 110592/676039: nums=110582..110604 -- не все равны
29#=6469693230/2310, 442368/2800733: nums=442353..442387 -- не все равны

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 624 ]  На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11 ... 42  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group