Как мне предствляется (возможно, и ощибочно) - не существует рекуррентных последовательностей порядка n и m
таких, что вторая выдаёт ту же последовательность значений что и первая при всех возможных начальных значениях для первой, однако существуют такие начальные значения, что последовательность, выдаваемая первой, совпадет с последовательностью, выдаваемой второй.
По крайней мере для линейных это очевидно - общий член выражается через сумму корней характеристического многочлена в соответствующих степенях, и для последовательности большего порядка появляются дополнительные слагаемые. так что совпасть с последовательностью меньшего порядка можно, если только коэффициенты при них нули, а это возможно при специальном подборе начальных условий. В случае совпадющих корней коэффициент при кратном корне в степени n будет не постоянной, а полиномом от n