2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 7  След.
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 11:11 


01/07/08
836
Киев
Alexandr Gavrichenko в сообщении #1480762 писал(а):
Идеи передаются обычным (естественным) языком и никак не формализуются.

Никак не формализуется следует понимать, что идеи чем то защищены от формализации, типа комментариев в программировании :?: Продемонстрируйте, пожалуйста если это возможно, на примере текста "Квантового анализа". Как действует формализация на доказательства?.
Хомский в Википедии писал(а):
Наиболее сложные — языки с фразовой структурой (сюда можно отнести естественные языки), далее — КЗ-языки, КС-языки и самые простые — регулярные языки.

Куда попадает Ваш "объект формализации"?

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 13:53 


01/08/20
69
hurtsy в сообщении #1480922 писал(а):
идеи чем то защищены от формализации

Нет, но при попытке ввести формализованный текст в компьютер это пришлось бы сделать. В конспектах часть высказываний на естественном языке взята в скобки.
Выше писали про то, что кроме теорем и доказательств математический текст содержит идеи, дающие читателю интуитивное понимание этих теорем.
Например, в тексте "Квантового анализа" упоминается "выбор шаров" (§7, Th. 4), а не расписываются формальные соотношения в произвольных конечных множествах. Соответствующий фрагмент текста оставлен на естественном языке. "Выбор шаров" - феноменологический образ, дающий понимание читателю.
Напротив, фраза "всякий простой идеал содержится в максимальном" (книга "Введение в теорию схем...") содержит лишь математические понятия и допускает формальную запись $$\forall I \in PRM \quad \exists I' \in MAX \quad (I \subset I' \subset R)$$.


Alexandr Gavrichenko в сообщении #1480949 писал(а):
Как действует формализация на доказательства?

Доказательства записываются преимущественно формально (см. конспекты).

hurtsy в сообщении #1480922 писал(а):
объект формализации

Не объект, а способ формализации. Вероятно, ближе всего к регулярным языкам.
Речь идёт о том, что теоремы и доказательства допускают регулярную запись, но на практике этой записью часто пренебрегают. Здесь сделана попытка формальную запись воссоздать.

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 14:55 


01/08/20
69
hurtsy в сообщении #1480922 писал(а):
Как действует формализация на доказательства?.

"Квантовый анализ", §7, теорема 7.1 - доказательство по существу формальное изложено в книге на естественном языке, а в конспекте (§7, Th. 3 - в нумерации конспекта) в виде формул.

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 17:15 
Аватара пользователя


31/08/17
2116
Праздная, бесполезная, бессодержательная деятельность. Никаких шансов скормить это математическому сообществу у вас нет. Даже у Бурбаков не прижилось. Развлекайтесь дальше.

-- 27.08.2020, 18:26 --

(Оффтоп)

Ну конечно. Он еще в "Космопоиска" состоит https://twitter.com/gavrichen

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 17:34 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
Alexandr Gavrichenko
А почему бы Вам свои сообщения о формализации математических текстов не писать бы в формализованном виде? Мы бы увидели и прониклись (чем бы прониклись, вопрос другой)

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 18:04 


01/08/20
69
pogulyat_vyshel в сообщении #1480974 писал(а):
Никаких шансов скормить это математическому сообществу у вас нет.

Формулы эстетически привлекательны.

Red_Herring в сообщении #1480976 писал(а):
А почему бы Вам свои сообщения о формализации математических текстов не писать бы в формализованном виде?

Потому что сообщения о формализации не являются математическим текстом. Метаматематика.

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 18:25 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
Alexandr Gavrichenko в сообщении #1480986 писал(а):
Потому что сообщения о формализации не являются математическим текстом. Метаматематика.
Т.е. метаматематику вы формализовать не можете, а вот на математику претендуете? А вот я ваше всообщение легко формализую:
BALDERDASH
И вот эта формула эстетически привлекательна :mrgreen:

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 18:41 


01/08/20
69
Red_Herring в сообщении #1480994 писал(а):
метаматематику вы формализовать не можете

$$  (\text{всякий простой идеал содержится в максимальном}) = \forall I \in PRM \quad \exists I' \in MAX \quad (I \subset I' \subset R)$$

Red_Herring в сообщении #1480994 писал(а):
на математику претендуете?

$True$

$ \text {BALDERDASH} = (\text {True} \wedge \neg \text {True})$

$ (\text {Формализация} = \text {BALDERDASH}) = \; ?$

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 19:12 


26/12/18
155
Alexandr Gavrichenko в сообщении #1480986 писал(а):
Red_Herring в сообщении #1480976 писал(а):
А почему бы Вам свои сообщения о формализации математических текстов не писать бы в формализованном виде?
Потому что сообщения о формализации не являются математическим текстом. Метаматематика.
ага, скажите это Гёделю :D

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 19:57 


21/05/16
4292
Аделаида
Alexandr Gavrichenko в сообщении #1480996 писал(а):
"всякий простой идеал содержится в максимальном" = $\forall I \in PRM \; \exists I' \in MAX \; (I \subset I' \subset R)$

Неясно, что такое $PRM$ (мне очень не нравится ваша идея обозначать простые идеалы и простые числа одинаково), $MAX$, и $R$.

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 20:17 


01/08/20
69
kotenok gav в сообщении #1481009 писал(а):
что такое $PRM$


$I = \text {идеал (фиксированный)}$

$I' =\text {другой идеал} $

$R = \text {кольцо}$


$IDL = \text {идеалы (множество идеалов)}$

$IDL.R = IDL(R) = \text {множество идеалов кольца} \; R$

$RNG = \text {кольца}$

$PRM = \text {простые (объекты) } $

$MAX = \text { максимальные (объекты) }$

Запись $ ( I \in PRM.IDL(R) )$, означающая, что " $I$ - простой идеал кольца $R$ " избыточна, так как в силу условленного $I $ уже обозначает идеал.
Поэтому используется краткая запись $ ( I \in PRM )$, означающая " $I$ прост ".
То, что $I$ находится в кольце $R$ указано в этом фрагменте формулы: $(I \subset I' \subset R)$. Нет нужды повторять в остальных частях формулы.


kotenok gav в сообщении #1481009 писал(а):
мне очень не нравится ваша идея обозначать простые идеалы и простые числа одинаково

Здесь я шёл от традиции естественного языка: Вы ведь для простых идеалов и простых чисел используете одно и тоже слово "простой".
Разумеется, для простых чисел можно ввести другую аббревиатуру. $SMP$, например.
Моя идея не столько в конкретном наборе аббревиатур, сколько в том, что такой набор аббревиатур можно ввести и эффективно использовать.

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 20:20 


21/05/16
4292
Аделаида
Alexandr Gavrichenko в сообщении #1481010 писал(а):
так как в силу условленного I уже обозначает идеал.

Кем это было условленно? Никем.
Alexandr Gavrichenko в сообщении #1481010 писал(а):
Запись $ I \in PRM.IDL(R)$

Что значит точка?
Alexandr Gavrichenko в сообщении #1481010 писал(а):
Здесь я шёл от традиции естественного языка:

Зря.

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 20:40 


01/08/20
69
kotenok gav в сообщении #1481011 писал(а):
Кем это было условленно? Никем.


Мной. В стартовом сообщении темы этот пример указан (раздел "буквы"). Также это отмечено в моём конспекте книги Ю. И. Манина "Введение в теорию схем..."

kotenok gav в сообщении #1481011 писал(а):
Что значит точка?


Сужение класса до подкласса (множества до подмножества).
Из всех идеалов $ IDL$ выбираются простые идеалы $PRM.IDL$

kotenok gav в сообщении #1481011 писал(а):
Зря.


Можно использовать для простых чисел аббревиатуру $IRD$ - неприводимые, по аналогии с неприводимыми многочленами, неприводимыми топологическими пространствами.
Соотношение для простых идеалов
$$ab \in I \Rightarrow (a \in I \vee b \in I)$$
соответствует соотношению для неприводимых топологических пространств
$$(X = V_1\cup V_2) \wedge (V_1, V_2\in (closed\; sets))\Rightarrow (V_1 = X \vee V_2 = X)$$.

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 21:08 


21/05/16
4292
Аделаида
Alexandr Gavrichenko в сообщении #1481015 писал(а):
Мной.

А если бы вы просто сказали $\forall R\in rings$, предварительно определив $rings$ как множество колец?
Alexandr Gavrichenko в сообщении #1481015 писал(а):
Сужение класса до подкласса (множества до подмножества).
Из всех идеалов IDL выбираются простые идеалы PRM.IDL

:facepalm:
Да просто назовите $primeideals(R)$ множество простых идеалов кольца $R$.
Alexandr Gavrichenko в сообщении #1481015 писал(а):
Соотношение для простых идеалов
$ab \in I \Rightarrow (a \in I \vee b \in I)$
соответствует соотношению для неприводимых топологических пространств
$(X = V_1\cup V_2) \wedge (V_1, V_2\in (closed\; sets))\Rightarrow (V_1 = X \vee V_2 = X)$.

Ничего не соответствует. и не надо

 Профиль  
                  
 
 Re: Формализация математических текстов
Сообщение27.08.2020, 21:22 


01/08/20
69
kotenok gav в сообщении #1481021 писал(а):
А если бы вы просто сказали $\forall R\in rings$

Дело в том, что в тексте фиксированное кольцо встречается в разных контекстах: иногда "для любого кольца $R$", иногда "существует кольцо $R$". А в Вашем варианте уже навешен квантор всеобщности.


kotenok gav в сообщении #1481021 писал(а):
$primeideals(R)$ множество простых идеалов кольца $R$.

По Вашему
$Commutativerings$ для коммутативных колец,
$Commutativegroups$ для абелевых групп.
Длинновато получается. $COM.RNG$ и $COM.GRP$ более кратко и (пока ещё) прозрачно для восприятия.

kotenok gav в сообщении #1481021 писал(а):
Ничего не соответствует.

Здесь я с Вами не соглашусь, как и математическая традиция.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 101 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 7  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Dmitriy40


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group