2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 17  След.
 
 
Сообщение30.09.2008, 16:13 
Аватара пользователя
zbl писал(а):
Профессор Снэйп писал(а):
"Услышал звон, а не знает, где он!"

Спорное утверждение.
Она широко известна и легко доступна:
http://ilib.mirror1.mccme.ru/plm/ann/a57.htm


Ну, на "популярные лекции" мне ссылаться не надо. Я каждый год эту теорему у студентов на экзамене спрашиваю. Причём не в форме популярного очерка, а в точной формулировке и с подробным доказательством :)

А вот в каком смысле она является примером "противоречивости логического мышления" Вы мне, пожалуйста, поясните. А то я не в курсе.

zbl писал(а):
Профессор Снэйп писал(а):
И про Канта, пожалуйста, тоже подробнее.

Всего пересказать, или можно частями?


Меня интересует та часть, где он показывает, что "логическое мышление противоречиво по своей природе".

 
 
 
 
Сообщение30.09.2008, 19:26 
zbl, вы - очередной начитавшийся словарей, школьных учебников и больших советских энциклопедий, и таким образом составивший себе совершенно неправильное представление о состоянии математики. Насколько я себе представляю, кроме как образованием это никак не лечится. Поэтому я, в-общем, ушел от ответа на насыпанные мне вопросы, ладно?

 
 
 
 
Сообщение30.09.2008, 21:33 
AD в сообщении #147530 писал(а):
Ну математика вообще ничего не утверждает, поэтому ничему и не противоречит.
(выделение шрифтом - мое)

В математике, да и не только в ней, считается, что $2+2=4$ .
Если это не утверждение, то это что?

 
 
 
 
Сообщение30.09.2008, 23:48 
zbl писал(а):
А с функциями? а с величинами?

Вообще-то, я не математик (хотя интересуюсь). Насколько знаю, попытки формализации были задолго до 50-х годов прошлого века. Если и были проблемы, то это с противоречивостью (например, парадокс Рассела, см. мой ответ АD). Похоже, что их преодолели (по крайней мере, каждый конкретный парадокс можно исключить), но возникли новые «проблемы» - с полнотой.
Что касается «функций» и «величин» - предположу, что здесь не принципиальные сложности. Строго формальными определениями оперируют лишь узкие специалисты, а учебники и технические справочники могут содержать самые разные определения (нельзя же всех технических работников заставить изучать формальные языки… им это ни к чему).
zbl писал(а):
Численно на компьютере?

Машина Тьюринга придумана до компьютеров. Современный (или ближайшего будущего) компьютер что-то меняет количественно (быстро работает, позволяет «тупо» проверить некоторые алгоритмы), но не качественно (качественно – слабее. У МТ, например, память бесконечная).

zbl писал(а):
…Логика, как пишут в словарях, -- это только наука о "правильных" (я тащусь!) умозаключениях.
Из A и B может следовать C не обязательно логически.
Правда, можно любое рациональное мышление считать предметом логики (и назвать такую логику супер-современной логикой).
Но всё равно она только инструмент достижения цели, а не сама цель...

Логика неслабо разработана…, современная цивилизация многим ей обязана, я имею о ней пусть поверхностное, но все же довольно упорядоченное представление. А что такое «рациональное мышление» - я не знаю. Если вы можете порекомендовать что-то почитать на эту тему, то смогу определеннее ответить.

Если и менять логику, то на что? Есть мнение, что формальная логика создавалась Аристотелем для борьбы с софистами…Эти ребята поднаторели в составлении убедительных «умозаключений». При отказе от логики, нет ли риска скатиться до софистики?

Добавлено спустя 46 минут 41 секунду:

Профессор Снэйп писал(а):
Ну сколько уже можно притягивать теоремы Гёделя к своим глупостям!!

Ну, на "популярные лекции" мне ссылаться не надо. Я каждый год эту теорему у студентов на экзамене спрашиваю.

А разве плохо, что многие интересуются этой теоремой? Да, большинство не специалисты, выводы могут быть поспешными и неверными.
Вы, будучи компетентным, что можете сказать о теореме и ее влиянии на развитие математики, логики, вообще традиционной науки?
-------------
Сплошь и рядом встречается вера во всемогущество науки (даже в этой ветке полно высказываний типа: «наука рано или поздно со всем разберется», «наука в принципе может все объяснить», «отсутствие бога – доказанный факт» и т.д.).

«Критика чистого разума» Канта не воспринимается многими технарями (аргументируют: «философия – не наука, а такой же бред как и религия».)

Теорема Геделя о неполноте – на стыке математики и логики. Это уже авторитетнее для верующих в науку.
-------------
PS Порекомендуйте что-нибудь почитать по теме… Может, осилю доказательство.

 
 
 
 
Сообщение01.10.2008, 02:14 
Шимпанзе в сообщении #147483 писал(а):
Исходя из этого закона государственное финансирование науки, во всяком случае целенаправленное , как практикуется в наукоемких странах, нужно отменить. Больше толку будет.
Если отменить целенаправленное госфинансирование, то останется финансирование частными компаниями. Фундаментальные исследования обладают свойствами, что думают много, пишут средне, а технологическое применение хоть чего-нибудь будет в лучшем случае лет через 50-70. Коммерческие компании такого не любят. У них есть бизнес-планы, инвесторы, которые желают дивидентов. Как Вы предполагаете это все сочетать?

 
 
 
 
Сообщение01.10.2008, 09:00 
Аватара пользователя
вздымщик Цыпа писал(а):
Шимпанзе в сообщении #147483 писал(а):
Исходя из этого закона государственное финансирование науки, во всяком случае целенаправленное , как практикуется в наукоемких странах, нужно отменить. Больше толку будет.
Если отменить целенаправленное госфинансирование, то останется финансирование частными компаниями. Фундаментальные исследования обладают свойствами, что думают много, пишут средне, а технологическое применение хоть чего-нибудь будет в лучшем случае лет через 50-70. Коммерческие компании такого не любят. У них есть бизнес-планы, инвесторы, которые желают дивидентов. Как Вы предполагаете это все сочетать?


Так же как и на Западе. Университеты решают что есть "фундаментальное" , а что нет, а не Государство. Иначе под вывеской " фундаментальное" сидят бездельники со связями и занимаются торсионными полями и эфиром.

 
 
 
 
Сообщение01.10.2008, 09:19 
Шимпанзе писал(а):
Университеты решают что есть "фундаментальное" , а что нет, а не Государство.

А еще лучше … вообще выйти за пределы одного гос-ва (где «научное» чиновничество таки может быть сильно зависимо). Устроить из авторитетных представителей национальных университетов международную конференцию <вселенский собор?> и решить что же есть «фундаментальное»… 8-)

 
 
 
 
Сообщение01.10.2008, 09:25 
Аватара пользователя
Michael2008 писал(а):
Шимпанзе писал(а):
Университеты решают что есть "фундаментальное" , а что нет, а не Государство.

А еще лучше … вообще выйти за пределы одного гос-ва (где «научное» чиновничество таки может быть сильно зависимо). Устроить из авторитетных представителей национальных университетов международную конференцию <вселенский собор?> и решить что же есть «фундаментальное»… 8-)


А разве в Западной Европе не так поступают?!

 
 
 
 
Сообщение01.10.2008, 09:43 
Шимпанзе писал(а):
А разве в Западной Европе не так поступают?!


Ну почему же только в Западной? Вплоть до флорентийского собора и восточные представители приезжали... включая Россию (вернее Русь).

Добавлено спустя 8 минут 20 секунд:

---------
это не только ирония. Экспертная оценка, коллегиальное решение ведущих мировых мыслителей... - можно рассчитывать на результат.

Смущает не совсем хороший исторический опыт...

 
 
 
 
Сообщение01.10.2008, 14:26 
naiv1 писал(а):
AD в сообщении #147530 писал(а):
Ну математика вообще ничего не утверждает, поэтому ничему и не противоречит.
(выделение шрифтом - мое)

В математике, да и не только в ней, считается, что $2+2=4$ .
Если это не утверждение, то это что?
Это читается так: "Если аксиомы Пеано, то $2+2=4$". Читать "В действительности $2+2=4$" неправильно.
В математике - только импликации. Дальше физики предполагают, что в действительности аксиомы Пеано имеют место, и за это бесплатно получают, что $2+2=4$. Хотя если в действительности $2+2$ окажется не равно $4$, то математики не виноваты - просто нечего было принимать аксиомы Пеано. Не нравится - не ешь.

Добавлено спустя 4 минуты 10 секунд:

То есть понятно на этом примере, что я хотел сказать? Категоричные утверждения всегда неверны*, согласен.
_________________
* это было категоричное утверждение.

Добавлено спустя 4 минуты 56 секунд:

Michael2008 в сообщении #147653 писал(а):
Вообще-то, я не математик (хотя интересуюсь). Насколько знаю, попытки формализации были задолго до 50-х годов прошлого века. Если и были проблемы, то это с противоречивостью (например, парадокс Рассела, см. мой ответ АD). Похоже, что их преодолели (по крайней мере, каждый конкретный парадокс можно исключить), но возникли новые «проблемы» - с полнотой.
Что касается «функций» и «величин» - предположу, что здесь не принципиальные сложности. Строго формальными определениями оперируют лишь узкие специалисты, а учебники и технические справочники могут содержать самые разные определения (нельзя же всех технических работников заставить изучать формальные языки… им это ни к чему).
В-общем, почти всюду +1. :)

 
 
 
 
Сообщение01.10.2008, 16:09 
AD писал(а):
zbl, вы - очередной начитавшийся словарей, школьных учебников и больших советских энциклопедий, и таким образом составивший себе совершенно неправильное представление о состоянии математики.

Спорное утверждение.
Но это уже явно выходит за рамки разговора.

AD писал(а):
Поэтому я, в-общем, ушел от ответа на насыпанные мне вопросы, ладно?

Я, в общем-то, вопросов, помнится, и не задавал.
Но всё равно лады.

Суть вопроса была в том, что мне показалось, что основные понятия математики таки меняют свой смысл с течением времени.
Но ведь математики в отличие от физиков тут ничем не связаны.
Достаточно просто не менять смысл старых понятий -- никто ж не запрещает.
Даже, если это в действительности не так, то возможно в принципе.

Другое дело, если, как в примере с механикой и электродинамикой с течением времени какие-то ветви математики просто забываются за ненадобностью.
На вскидку приходит на ум только логарифмическая линейка.
С натягом, но можно сказать, что теория приёмов вычисления на ней была своего рода математикой логарифмической линейки.
А сейчас уже, наверное, никто не вспомнит, что такое значность и как её подсчитывать.
Тогда можно было бы задаться вопросом типа, где гарантия, что с развитием вычислительной техники алгебра не станет ненужной?
Но, конечно, лучше бы привести пример чисто математической теории, которая была забыта из-за изобретения новой теории.

Добавлено спустя 21 минуту 5 секунд:

Профессор Снэйп писал(а):
А вот в каком смысле она является примером "противоречивости логического мышления" Вы мне, пожалуйста, поясните. А то я не в курсе.

А можно, сразу конкретные вопросы задавать без предварительных спорных утверждений?
А то просто моё свободное время теряем. которое, кстати, тает.

А пример, по-моему, хороший: человек хочет построить полностью формальную теорию (формальную логику) -- ан нет тебе.
Как же тогда будет возможно только с помощью логических умозаключений получать новое знание?
Конечно, из существования теоремы Геделя нельзя делать вывод, что логическое мышление противоречиво или, что материалисты правы, а идеалисты нет (могу, кстати цитату-то раскопать из учебника -- презабавнейшая).
Но почему она не служит примером противоречий, с которыми неизбежно сталкивается логическое мышление?

Профессор Снэйп писал(а):
Меня интересует та часть, где он показывает, что "логическое мышление противоречиво по своей природе".

Я считаю, что это и является основным содержанием его критик; причём изложенние не требует интер-т-репации.
Другое дело, какие выводы он делал или на какой платформе стоял.
Вы считаете, что логическое мышление не противоречиво по своей природе, или же, что Кант писал о другом?

Добавлено спустя 22 минуты 2 секунды:

Michael2008 писал(а):
zbl писал(а):
Численно на компьютере?

Машина Тьюринга придумана до компьютеров. Современный (или ближайшего будущего) компьютер что-то меняет количественно (быстро работает, позволяет «тупо» проверить некоторые алгоритмы), но не качественно (качественно – слабее. У МТ, например, память бесконечная).

Вы просили пример того, как без логики можно получить надёжный результат...

Michael2008 писал(а):
Логика неслабо разработана…, современная цивилизация многим ей обязана

Мне лично только лишь не хотелось видеть её упоминание в критерии научности, а не изжить её со Света.
В критерии научности должно быть некое выражение точности и достоверности через специфичную потребность, которую можно условно назвать жаждой знаний.

Michael2008 писал(а):
Сплошь и рядом встречается вера во всемогущество науки

Как раз хотел поговорить о тех силах, которые формируют мировоззрение, науке, вере в науку и не-науке, но споткнулся на невозможности отличить науку от не-науки.
В данный момент уже есть некое определённое подозрение, как бы это можно было проделать.
Но лимит свободного времени растаял окончательно.

 
 
 
 
Сообщение01.10.2008, 16:22 
zbl писал(а):
А пример, по-моему, хороший: человек хочет построить полностью формальную теорию (формальную логику) -- ан нет тебе.
Ну и почему "ан нет"? Как это следует их вышеупомянутой теоремы?

 
 
 
 
Сообщение01.10.2008, 22:53 
AD в сообщении #147753 писал(а):
Категоричные утверждения всегда неверны, согласен

Какие утверждения Вы называете категоричными?

При естественном предположении о категоричности утверждений цитируемая выше фраза ( утверждение) неверна, как и фраза-утверждение "Категоричные утверждения всегда верны".

 
 
 
 
Сообщение01.10.2008, 23:33 
Аватара пользователя
zbl в сообщении #147766 писал(а):
А пример, по-моему, хороший: человек хочет построить полностью формальную теорию (формальную логику) -- ан нет тебе.


Полностью формальную теорию построить можно, но с ней трудно работать. Например, полностью формальное доказательство теоремы Пифагора, исходя из аксиом Гильберта, занимает больше 30 страниц и представляет собой длинную цепочку тривиальных рассуждений. Поэтому на практике удовлетворяются тем, что объясняют, как всё нужное можно формализовать, а затем рассуждают "более или менее" формализованно, лишь бы было понятно, как при нужде получить полную формализацию.

Но ведь Вы не это имели в виду. Вы ведь хотите иметь формальную теорию, которая отвечала бы на все вопросы. Ну, нет такой теории. И что?

zbl в сообщении #147766 писал(а):
Как же тогда будет возможно только с помощью логических умозаключений получать новое знание?


Не понял проблемы. Почему отсутствие "универсальной" формальной теории мешает получать новые знания?

zbl в сообщении #147766 писал(а):
Конечно, из существования теоремы Геделя нельзя делать вывод, что логическое мышление противоречиво


Разумеется, нельзя. Теорема Гёделя говорит лишь о том, что в достаточно богатой формальной теории существуют "истинные" утверждения, которые нельзя доказать, то есть, вывести из аксиом теории, пользуясь принятыми в ней правилами вывода. Я не понимаю, почему это обстоятельство следует рассматривать как противоречие или как препятствие к получению нового знания.

zbl в сообщении #147766 писал(а):
Но почему она не служит примером противоречий, с которыми неизбежно сталкивается логическое мышление?


Что Вы называете противоречием логического мышления? Для меня противоречие - это когда из аксиом теории выводимо некоторое утверждение одновременно с его отрицанием. В теореме Гёделя ничего подобного нет.

 
 
 
 
Сообщение02.10.2008, 02:04 
Шимпанзе в сообщении #147696 писал(а):
Так же как и на Западе. Университеты решают что есть "фундаментальное" , а что нет, а не Государство. Иначе под вывеской " фундаментальное" сидят бездельники со связями и занимаются торсионными полями и эфиром.
Но университеты ведь не финансируются бизнесом напрямую. Только через фонды. Т.е. мужики сдают бабки в фонд, получают свои налоговые послабления и больше их ничего не интересует. Далее этими деньгами распоряжаются точно такие же чиновники, выдают такие же гранты за такие же откаты по таким же точно связям. В чем принципиальная разница? Единственное отличие на мой взгляд может быть только в том, что фондов сильно больше, чем государств и есть призрачная надежда, что среди них найдется хотя бы парочка приличных. Однако, все эти фонды все равно под присмотром у госчиновника, который решает, за какие отчисления давать мужику налоговые послабления, а за какие нет. И если фонд плохо делится откатами с этим госчиновником, то он может запросто из хорошего списка вылететь. Так в чем же принципиальная разница между госфинансированием и через фонды?

 
 
 [ Сообщений: 242 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 17  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group