Про Смирновых. Я про этот учебник ничего не знал (его в либрусеке нет). С некоторым трудом нашел. Первая глава в нем какая-то очень нетрадиционная, довольно странная и мутная. Я понял ее концепцию в общем, но вижу, что там очень много логических и педагогических дыр в изложении. Если её семиклассник будет читать самостоятельно, у него голова опухнет. Дальше в основном хорошо написано. Но про векторы очень плохо, считай почти никак.
MihrА какие у Вас к ней претензии ? Выкатывайте, не стесняйтесь.
Вернемся, однако, к Колмогорову.
-----------------------------------------------
14)
А.Д.Александров писал(а):
Да мудрено ль ? Коль вам твердят,
что вектор --- это перенос,
то в самом деле хватит вас понос !
Итак, рассмотрим, как в учебнике Колмогорова излагаются векторы, а заодно и подобие (т.к. эти темы между собой связаны).
Прежде всего, определение вектора как параллельного переноса выглядит диковатым. На физике ученики видели, что вектор --- это отрезок со стрелочкой. А тут им предлагают считать, что вектор --- это параллельный перенос. Явный разрыв шаблона. Кроме того, преобразование (параллельный перенос) --- это более сложная сущность, чем отрезок. На самом деле, вектор --- это как бы и не отрезок, и тем более не параллельный перенос, а то, что имеет величину и направление. Например, сила. То есть, говоря абстрактно, и "параллельный перенос", и "класс эквивалентности направленных отрезков" --- это, оба, понятия,
замещающие "истинное" понятие вектора, которое вообще неизъяснимо. (Не знаю, понятна ли эта мысль ?). Причин считать, что сила --- это параллельный перенос, чего-либо куда-либо, еще меньше, чем причин считать, что сила --- класс направленных отрезков. Так почему в качестве "представляющего понятия" для "вектора" выбрано более сложное ?
Когда определяют, что такое сумма векторов, то в одном случае говорят о композиции отображений, а в другом просто приставляют друг к другу два отрезка со стрелочками. Так что проще (это вопрос риторический) ? И ведь в любом случае, когда доказывают свойства сложения, приходится рисовать отрезки. Так в чем смысл введения вектора как переноса ?
(Правда, когда вводят сложение векторов через приставление отрезков, надо еще доказывать корректность определения, т.е. то, что результат не зависит от того, с какой точки начинается построение. Ну да это рассуждение на десять (от силы) строчек, через свойства параллелограмма.)
Композиция отображений --- важная идея, но в связи с векторами ее вводить незачем было. Ее имеет смысл вводить, когда речь идет о поворотах, что в 8 классе (по тем временам) делалось. И тогда она и "зашла" успешно. А правило сложения векторов ее бы и иллюстрировало. А Колмогоров с ног на голову поставил (в этом месте, как и в стопятиста других).
(Повороты)
Кстати, а была ли большая нужда во введении композиции поворотов на тот момент (в 8 классе) ? Непосредственно не видно. Вполне вероятно, это было полезно для физики. Во всяком случае, концепция важная, и лучше рассказать лишнего, чем дыры оставить.
Учительница, которая учила нас в 7 классе, была, по моим воспоминаниям, женщина, расположенная к новому и прогрессивному. Она говорила слова, что вектор --- это перенос, но, похоже, и сама в них не верила и рисовала на доске отрезки со стрелочками.
При определении суммы векторов через композицию надо доказать, что композиция переносов --- перенос. Используется рассуждение такое:
(а) при параллельном переносе каждый луч переходит в сонаправленный луч;
(б) и наоборот, любое перемещение, переводящее каждый луч в сонаправленный --- это перенос; (оба этих утверждения --- каждое отдельная теорема)
(в) композиция двух перемещений --- перемещение; и композиция двух отображений, переводящих каждый луч в сонаправленный --- такова же; значит, композиция двух переносов --- это перемещение, переводящее каждый луч в сонаправленный, а потому является переносом.
Иногда в математике, когда надо доказать, что некоторая совокупность преобразований --- группа, а доказать это совсем впрямую не видится как, используется именно такой ход рассуждений.
(Более точно. Пусть
--- некоторое множество,
--- некоторая совокупность преобразований множества
,
-- некоторая структура на множестве
. Допустим, нам удалось показать, что (а) любое преобразование из
сохраняет
, (б) и обратно, любое преобразование, сохраняющее
, лежит в
, (в) и к тому же произведение двух преобразований, сохраняющих
, тоже сохраняет
, априорным образом (т.е. без использования в доказательстве явного вида этих преобразований), и то же про обратные. Тогда отсюда можно сделать вывод, что
--- группа.)
Но такой ход рассуждений, надо сказать, весьма недецкий. Да и долго получается. Тут ожидать, что юный читатель легко въедет, да еще по пути и не потеряет нить мысли --- трудно.
Дальше в главе про векторы написано про умножение вектора на число и свойства этой операции. В издании 1979 г. вообще без доказательств, а в предыдущем с доказательствами. Правда, доказательство второго закона дистибутивности (
) довольно сложное и долгое, там опять недецкий ход мысли, и школьник его с трудом мог бы понять. По-научному этот ход мысли звучит как "делимая абелева группа без кручения является векторным пространством над
". И хотя в книжке этот ход мысли описан в школьных словах, но заходит всё равно плохо. У меня, во всяком случае, в голове не отложилось. В конце концов там всё сводится к тому, что учительница рисует на доске два подобных треугольника, на сторонах которых нарисованы стрелочки. Т.е. опять получается, что стремились к большой научности, а поскольку эта научность школьникам не доступна, то прибегаем к наглядности. (Много хотели, мало получили, из-за того, что много хотели.)
В следующей главе рассматривается подобие. Оно рассматривается с помощью векторов, при этом главную роль играет тот самый второй дистрибутивный закон. Но если мы его уже раньше приняли наглядно, то получается, что самые главные сведения про подобие мы уже тоже приняли наглядно, (когда рисовали два подобных треугольника со стрелочками), и тогда выходит, что большая часть главы про подобие --- это просто эмпирические рассуждения, причем довольно
беспорядочные, вокруг того, что мы и так уже согласились считать верным ! Как-то так.
При традиционном изложении, как я понимаю, сначала теорема Фалеса, из нее --- о пропорциональных отрезках, оттуда --- признаки подобия треугольников, а уже оттуда --- второй дистрибутивный закон для векторов. (См. Атанасян, например. Впрочем, в (современном) Атанасяне не совсем так, там площади используются). И ведь так гораздо проще и полнее получается, чем по-колмогоровски ! А посмотрите, в какой
попе середине главы находится теорема о пропорциональных отрезках у Колмогорова, и как до нее пилить сто верст лесом ! (Короче, как и во многих других местах учебника, опять с ног на голову, и объясняется более простое (подобие) через более сложное (векторы).)