Не совсем понял вопрос, но расскажу, как рисуются плоскости эллиптического пространства (они имеют вид сфер с дырками). Эллиптическое пространство - это трёхмерная сфера кватернионов нормы единица с отождествлёнными диаметрально противоположными точками. Её проектируем стереографической проекцией на трёхмерное пространство чисто мнимых кватернионов (совершенно так же, как обычную сферу можно спроектировать на обычную плоскость стереографической проекцией). То, что рисует программа - это именно трёхмерное пространство, на которое спроектирована картинка трёхмерной сферы. Картинка конформная, углы настоящие (как в трёхмерной сфере). Эллиптическое пространство устроено как проективное, плоскость задаётся четвёркой проективных координат, определённых с точностью до множителя (точка тоже). Если плоскость задана четвёркой
, сопоставляем ей кватернион
. Рисуем единичную сферу, точки её поверхности воспринимаем как чисто мнимые кватернионы нормы единица
. Сфера триангулируется и приближается многогранником (это стандартный метод рисования чего угодно в компьютерной графике). Единичной сфере соответствует единичный кватернион. Затем умножаем точки единичной сферы на кватернион
и получаем "выпученную сферу", которая и есть плоскость с кватернионом
. И нужно ещё сделать стереографическую проекцию, которая переводит точку с координатами
в пространстве кватернионов в точку
в трёхмерном пространстве, которое мы видим на экране. Чтобы получилась сфера с дыркой, надо начинать не с единичной сферы, а с полусферы и тут возникает пакость (полусферу надо правильно развернуть, иначе дырка глядит не туда).