Когда я начинал эту тему, то плохо представлял себе этот вопрос (потому и начал). Сейчас я представляю его гораздо лучше. Уверен, что всем, кто хочет разобраться в этом вопросе, это будет интересно.
Начнем с сопротивления движению тел в воздухе. Ньютон - первый, кто дал какую-то модель этого явления - полагал, что все дело в площади поперечного сечения тела. Поток ударяется о тело спереди, передает ему импульс и... по сути все. За телом ничего интересного не происходит. Заметим, что сопротивление в этой модели зависит от плотности и скорости среды, т.е. от потока ее импульса, но никак не от ее вязкости. Такая характеристика, как вязкость, тут у среды вообще не предполагается. Все были уверены, что примерно так и нужно обьяснять сопротивление движению тел в воздухе.
Даламбер заметил, что это слишком грубое приближение реальной ситуации, т.к. поток здесь не подчиняется уравнению неразрывности. Вообще, у Ньютона рассматривалась не непрерывная среда, а скорее поток дроби. Даламбер не сомневался, что получит правильное значение сопротивления движению, если заменит поток дроби на непрерывную среду. Он рассмотрел обтекание цилиндра (его просто посчитать) в плоском случае средой, которая должна быть неразрывной. Трение он туда не включил, поскольку был уверен, что лобовое сопротивление от давления среды получается совершенно независимо от сопротивления трения. К тому же еще не было создано уравнений течения вязкой жидкости. Возможно считалось даже, что воздух просто не имеет вязкости. К своему удивлению он получил, что теоретически никакого сопротивления давления просто нет ни при какой скорости и плотности потока. Это было совершенно неожиданно. Сейчас можно подумать примерно следующее: "Ну конечно, какое же может быть сопротивление в жидкости с нулевой вязкостью? Глупый Даламбер". Однако Даламбер был уверен, что трение и давление на поперечное сечение - это совершенно независимые вещи. Еще раз напомним, что Ньютон расcчитывал сопротивление, вообще не нуждаясь ни в какой вязкости.
Релей экспериментально изучал обтекание цилиндра и попутно установил, что если цилиндр вращается, то на него действует сила, перпендикулярная потоку (эффект Магнуса). Применение модели идеальной жидкости к этому случаю показало, что она дает осмысленный ответ, т.е. в отличии от силы лобового сопротивления позволяет правильно раcсчитать силу, действующую на вращающийся цилиндр перпендикулярно движению потока. Предположим, что скорость поверхности вращающегося цилиндра складывается с той скоростью жидкости, которая получается на поверхности не вращающегося цилиндра в решении Даламбера. Заметим, что это не совсем соответствует поведению вязкой жидкости, скорость которой на поверхности была бы просто равна скорости поверхности цилиндра. Нам нужно наложить на решение Даламбера какое-нибудь потенциальное (идеальное) течение, которое добавит окружную скорость на поверхности цилиндра. Возьмем самое простое круговое течение c тангенциальной скоростью
. Полученный суммарный поток, просчитанный по уравнению Бернулли, создает правильную боковую силу.
Почему для лобового сопротивления получается бессмысленность, а для боковой силы - правильный результат? Потому, что наше круговое течение
потенциально везде, кроме центральной точки. Сила приходится всегда именно на нее. Выделим некоторый обьем текущей жидкости. Если ее течение турбулентно, то каждая частица такого течения вращается вокруг своего центра и картина течения сложная. Но очень часто нам важно знать лишь суммарное вращение всех частиц внутри этого объема, т.е. циркуляцию. Тогда мы можем считать, что внутри этого обьема вращается всего одна частица в центре вихря, а весь остальной объем течет потенциально. Именно так мы и посчитали силу эффекта Магнуса. Мы могли повсюду работать с простым идеальным течением, а единственная не потенциальная точка в этом течении дала нам правильное значение силы.
Для простых потенциальных течений разработаны мощные методы преобразований, который позволяют преобразовать простое решение для обтекания вращающегося цилиндра в сложное решение для обтекания самых разных тел, в том числе и профиля крыла. Так Жуковский и Ланчестер поняли, что эффект Магнуса и подьемная сила крыла - это одно и то же. Только для цилиндра циркуляция создается его вращением, а для крыла - его несимметричностью. Мощь этого метода в том, что он устанавливает однозначное соответствие между силой, действующей на простой вращающийся цилиндр и силой, действующей на сложное не вращающееся крыло. Все свелось к тому, что для вычисления подьемной силы достаточно знать только циркуляцию скорости вокруг крыла, т.е. крыло можно просто заменить на вихрь с этой циркуляцией. Прандтль уже рассматривал крыло самолета, как ось, на которую нанизаны вихри с разной циркуляцией, распределенной по длине крыла.
Создатели теории крыла начинали с плоской задачи, т.е. обтекание крыла бесконечной длины. Решение, полученное для такого крыла, дает правильную подьемную силу, но все еще не дает никакого лобового сопротивления. Оно не позволяет подсчитать требуемую мощность двигателя, необходимую для полета, а это вторая важнейшая задача после подсчета подъемной силы. Кроме того, течение воздуха перед крылом выглядит такое же, как и за крылом. Получается, что набегающий на крыло поток уже имеет кинетическую энергию и импульс, хотя в реальности воздух перед и за самолетом ведет себя совершенно по разному. Этого я долго не мог понять. Оказалось, что в плоском случае ничего другого ожидать и нельзя. Это несоответствие исчезает, только если вместо бесконечно длинного крыла рассматривать реальное конечное крыло. В трехмерном случае можно организовать потоки неразрывной среды так, что воздух перед самолетом может оставаться спокойным. Замена бесконечного крыла на конечное приводит к следующим эффектам: 1- поток перед крылом становится спокойным, а за крылом приобретает энергию и импульс, 2 - появляется лобовое (точнее, индуктивное) сопротивление. Здесь много путаницы, так что нужно быть внимательным.
Сопротивление движению тела в потоке состоит из трех частей: трение, вихревое сопротивление и индуктивное сопротивление. Трение самое понятное, оно приводит к нагреву потока. Вихревое сопротивление сложнее. Вязкость жидкости с одной стороны приводит к появлению трения, а с другой - к изменению всей картины течения, что сказывается на распределении давления по поверхности обтекаемого тела. Она перестает быть совершенно симметричной, как в парадоксе Даламбера, и даже из-за очень малого трения возникает большая сила нескомпенсированного давления, которая добавляется к силе трения и может даже легко ее превышать. Поэтому вязкость одновременно приводит и к трению, и к давлению. Вихревое сопротивление (или иначе, сопротивление следа) можно считать переводом энергии движения в мелокомасштабную турбулентность, не имеющую импульса. Эти силы нельзя получить и исследовать раздельно, поэтому их сумму просто называют лобовым сопротивлением. Ничего этого нет в идеальной жидкости и вихревой теории крыла.
Индуктивное сопротивление - это расход энергии движущегося тела на придание потоку движения, имеющего не нулевой импульс. Т.е. в случае самолета - на удерживание его от падения. До пролета крыла воздух спокоен, после пролета - имеет вертикальный импульс и энергию. Она берется от двигателя, а он производит работу только против сил сопротивления движению. Значит, создание вертикального импульса сопровождается появлением еще одной силы сопротивления движению. Эта сила для бесконечного крыла равна нулю, т.к. там набегающий поток уже имеет импульс и энергию и двигателю нечего делать. Но для конечного крыла эта работа имеет вполне определенное значение даже в идеальной жидкости. Существует формула Прандтля-Мунка, которая утверждает, что для горизонтального полета самолету весом
и размахом крыла
со скоростью
в среде с плотностью
требуется мощность двигателя не менее, чем:
Эта мощность расходуется не на трение, а исключительно на противодействие силе тяжести. Можно заметить, что она падает с увеличение длины крыла и скорости полета. В непрерывной среде невозможно создать вертикальный импульс, не придав среде движения в горизонтальном, перпендикулярном к полету направлении. Эта энергия образует концевые вихри, вкачивается в воздух совершенно зря и тратит энергию двигателя даром. Формула Прандтля-Мунка дает необходимую мощность двигателя для случая самого экономного придания воздуху вертикального импульса, когда ему придается минимально возможное горизонтальное движение, но все же окончательно от него не избавиться.