Munin
Вот, для Вас
Спасибо! (Хотя жаль, что мы не услышали начальника транспортного цеха.)
В целом понятно, но вот этот абзац вызывает у меня несогласие:
Цитата:
Алгебраические методы в геометрии: метрические соотношения в треугольнике, метод координат и векторная алгебра - более важны для практических приложений, чем продвинутые геометрические теоремы. Они позволяют в принципе просчитать любую конкретную конфигурацию, но они убивают красоту геометрии, сводя все к рутинным вычислениям, и на школьном уровне едва ли могут служить источником интересных задач (кстати, таких задач и нет в соответствующих параграфах учебника Погорелова).
Вряд ли, однако, можно предположить, что автор считает, что геометрия изучается в школе только ради ее практических приложений. Если стать на такую точку зрения в отношении геометрии, то логично перенести ее и на другие предметы, а тогда общеобразовательные школы надо заменить специализированными техникумами. ...
Я согласен, что у школьного курса геометрии есть цель увлечь некоторой красотой и интересными задачами. Но мне гораздо больше видна практическая значимость этого курса, те самые практические приложения, о которых так презрительно пишет
Винберг. Самое главное практическое приложение школьной математики (и геометрии, и алгебры, и начал анализа) - это школьная же физика. И здесь умение "
в принципе просчитать любую конкретную конфигурацию", причём рутинно и алгоритмизированно, причём желательно быстро, - становится незаменимым рабочим инструментом. Школьнику, решающему физическую задачу (в том числе, интересную), нет времени appreciate красоту геометрии.
Разумеется, возможны тот или иной уклон в преподавании. Но абсолютизировать крайние позиции бессмысленно. И получается, "прикладной" подход тоже имеет право на существование, и в некоторых случаях может быть предпочтительнее.
Оценка же
Винберга выглядит слишком резкой, однобокой и необоснованной.