2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4  След.
 
 как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 06:19 
Модератор
Аватара пользователя


11/01/06
5702
Пусть $f(x) = x^2 + \frac{2}{\pi^2}\sin(\pi x)^2$. Докажите, что для всяких неотрицательных $a,b,c$ с условием $a+b+c=1$ выполняется неравенство:
$$f(a)+f(b)+f(c) \geq \frac{3}{4}.$$


Замечание. Если бы $f(x)$ была выпуклой, то неравенство Йенсена дало нам $f(a)+f(b)+f(c) \geq 3f(\frac{1}{3}) > 0.78 > \frac{3}{4}$. Однако, проблема в том, что $f(x)$ невыпукла на $[0,1]$.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 08:14 


05/09/16
12041
maxal
Калькулятор говорит что $f(0,17)+f(0,17)+f(0,66)\approx 0,42$
? f(x)=x^2+(2*Pi^(-2))*sin((Pi*x)^2)
%1 = (x)->x^2+(2*Pi^(-2))*sin((Pi*x)^2)
? f(0.17)+f(0.17)+f(0.66)
%2 = 0.4218499113728044513227431163

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 08:17 
Модератор
Аватара пользователя


11/01/06
5702
wrest, вы квадрат в аргумент синуса занесли, а он должен быть снаружи.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 08:34 


05/09/16
12041
maxal
То есть д.б. так?
$f(x) = x^2 + \frac{2}{\pi^2}\sin^2(\pi x)$

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 08:37 
Модератор
Аватара пользователя


11/01/06
5702
wrest, должно быть так как у меня написано. $\sin(\pi x)^2$ означает $(\sin(\pi x))^2$ если вам угодно.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 09:06 
Модератор


13/07/17
166
 !  wrest

В задачах, в которых требуется что-то доказать, не приветствуются посты, сводящиеся к использованию калькуляторов и не содержащих идей, приближающих к решению задачи. За редким исключением, такие посты считаются бессодержательными. Прошу Вас не увлекаться ими.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 11:33 
Заслуженный участник
Аватара пользователя


30/01/06
72407
maxal в сообщении #1406548 писал(а):
$\sin(\pi x)^2$ означает $(\sin(\pi x))^2$ если вам угодно.

Обычно не означает. Это стоило уточнить.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 14:45 


11/07/19
17
Доопределим до выпуклой: $g(x)=f(x)+x^2-x.$
Тогда требуется показать, что $g(a)+g(b)+g(c)\geq (a-\frac{1}{2})^2+(b-\frac{1}{2})^2+(c-\frac{1}{2})^2.$
По неравенству Йенсена: $g(a)+g(b)+g(c)\geq 3g(\frac{1}{3})=\frac{2}{3}+\frac{9}{2\pi^2}.$

-- 23.07.2019, 17:38 --

$a'=a-\frac{1}{2}, b'=b-\frac{1}{2}, c'=c-\frac{1}{2},\quad |a'|\leq \frac{1}{2}, |b'|\leq \frac{1}{2}, |c'|\leq \frac{1}{2}.$
Отсюда $a'^2+b'^2+c'^2\leq \frac{3}{4}<\frac{2}{3}+\frac{9}{2\pi^2}.$

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 17:39 
Модератор
Аватара пользователя


11/01/06
5702
ziv, эх, выглядит красиво, но вот проблемка: $3g(\frac{1}{3}) = -\frac{1}{3} + \frac{9}{2\pi^2}$, а не то, что вы написали.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение23.07.2019, 19:47 


05/09/16
12041
ziv
Неравенство"на тоненького", так что такие грубые штуки как вы придумали -- не пройдут. Даже если натянуть "выпуклую оболочку", в виде отрезка прямой, то окажется, что там будет, к сожалению, меньше чем $3/4$

(Оффтоп)

Зеленым показана $y=f(x)$, красным $x=1/3$, синим $y=1/4$
Пунктир -- "выпуклая оболочка" - отрезок соединяющий вершины выпуклостей исходной функции (так прошла бы резинка, намотанная на $f(x)$, то есть ещё более близкую к исходной выпуклую функцию придумать никак нельзя.
Изображение
видно что красная и синяя линии пересекаются выше чем красная и пунктирная.
Так что метод дополнения исходной функции $f(x)$ до выпуклой - имхо не сработает в принципе.
P.S. Если, конечно, я верно "натянул резинку". Но вроде как на правильное место натянуто...

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение25.07.2019, 01:01 


05/09/16
12041
Смотрю можно ли как-то "в лоб".
Полагая $a=b=x;c=1-2x$ продифференцируем $f(a)+f(b)+f(c)=2f(x)+f(1-2x)$
Неимоверными затратами бумаги получаем $(2f(x)+f(1-2x))'=4\left(3x-1+\dfrac{\sin(2 \pi x) + \sin (4 \pi x)}{\pi}\right)$
Один из корней очевиден, $x=1/3$ и для него как уже указал ТС рассматриваемая сумма $\sum \approx 0,78 > 3/4$
Но вот если бы показать, что производная обращается в ноль только ещё в одном месте и для него $\sum > 3/4$, то добрых полдела было бы сделано. Осталось бы показать, что этот минимум глобальный (хотя и не очень ясно как :facepalm: ).

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение25.07.2019, 15:31 


11/07/19
17
maxal, мда, поспешил...

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение25.07.2019, 23:24 


05/09/16
12041
Глядя на синусы, есть ещё смутная догадка, что можно как-то использовать то, что поскольку $a+b+c=1$ то $\pi a;\pi b; \pi c$ -- это углы какого-то треугольника.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение26.07.2019, 19:32 
Заслуженный участник


26/06/07
1929
Tel-aviv
Так как $$f''(x)=4\left(\cos2\pi x+\frac{1}{2}\right),$$
то получаем, что $f$ выпуклая функция на $\left[0,\frac{1}{3}\right]$ и на $\left[\frac{1}{3},1\right]$ и вогнутая на $\left[\frac{1}{3},\frac{2}{3}\right].$
Труднейший случай $0\leq a\leq\frac{1}{3}<b\leq\frac{2}{3}<c\leq1$ невозможен поскольку сумма переменных равна единице.
Поэтому две переменные должны попасть в один из промежутков.
Если это $\left[0,\frac{1}{3}\right],$ то применяя неравенство Йенсена, получаем неравенство от одной переменной.
Действительно, пусть $\{a,b\}\subset\left[0,\frac{1}{3}\right]$ и $\frac{a+b}{2}=x$.
Тогда $$f(a)+f(b)+f(c)\geq2f\left(\frac{a+b}{2}\right)+f(c)=2f(x)+f(1-2x)=2x^2+\frac{4}{\pi^2}\sin^2\pi x+(1-2x)^2+\frac{2}{\pi^2}\sin^2\pi (1-2x).$$
Остаётся доказать, что $$2x^2+\frac{4}{\pi^2}\sin^2\pi x+(1-2x)^2+\frac{2}{\pi^2}\sin^2\pi (1-2x)\geq\frac{3}{4}$$
или
$$6x^2-4x+\frac{1}{4}+\frac{2}{\pi^2}(2\sin^2\pi x+\sin^22\pi x)\geq0.$$
Не вижу простого доказательства.
Если это $\left(\frac{1}{3},\frac{2}{3}\right],$ то применяя неравенство Караматы, получаем неравенство от одной переменной.
На промежутке $\left(\frac{2}{3},1\right]$ не могут оказаться две переменные.

 Профиль  
                  
 
 Re: как бы неравенство Йенсена для невыпуклой функции
Сообщение26.07.2019, 19:58 


05/09/16
12041
arqady в сообщении #1407212 писал(а):
Если это $\left[0,\frac{1}{3}\right],$ то применяя неравенство Йенсена, получаем неравенство от одной переменной. Оно получается очень тонкое:
$$6x^2-4x+\frac{1}{4}+\frac{2}{\pi^2}(2\sin^2\pi x+\sin^22\pi x)\geq0.$$

А можно это пояснить?
Там минимум как раз во втором нуле производной о которой я писал выше,
$(2f(x)+f(1-2x))'=4\left(3x-1+\dfrac{\sin(2 \pi x) + \sin (4 \pi x)}{\pi}\right)$
Его я нашел численно. У вашей функции её значение там около одной тысячной. Как?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 52 ]  На страницу 1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group