На 100 % точно нее совпадет. Это что-то вроде линейной регрессии для окружности. Если у нас есть выборка, моделирующая линейную зависимость, то мы с помощью МНК можем вывести уравнение прямой, при этом, не факт, что хотя бы одна точка из выборки будет лежать на этой прямой.
(Оффтоп)
У поэта Андрея Вознесенского ворон спрашивает "На фига?", а поэт рифмует с "Бытия", "края", "холуя".
Так вот - на фига?
-- 04 июл 2019, 13:01 --Тогда такой вопрос: если у нас задан произвольный эллипс (в виде уравнения), будет ли барицентр всех его точек совпадать с его истинным центром?
Будет. Если заданы все его точки. Если заданы 4 дуги - будет, если дуги расположены симметрично относительно центра (на рисунке это не так). В этом случае достаточно найти среднее координат 4 соответственных точек дуг, не нужно всех. Или, чтобы не затрудняться с выбором - всех 8 концов. Но если симметрия не гарантирована - полученная величина может быть весьма далека от центра.
-- 04 июл 2019, 13:10 -- Возиться с системой уравнений эллипса не очень хочется. Тем более, если результат получится примерно такой же, как если просто взять и посчитать барицентр всех точек.
(Оффтоп)
Купец, отправляясь в плавание:
- Что тебе привезти, доченька младшенькая?
- Привези мне, батюшка, чудище страшное для сексуальных утех и
извращений!
- Да ты что, доченька, я же отец тебе - я не могу этого позволить!
- (вздыхая) Хорошо... пойдем по длинному пути.... Привези мне, батюшка,
цветочек аленький.
Считать барицентр всех точек бесконечно долго. В отличие от решения системы уравнений. В общем, надо либо основания считать, что дуги симметрично расположены относительно центра эллипса, либо заведомо получать неверное решение. А способа проверить, симметричны ли они, я не вижу. Ну, кроме как рассчитать параметры эллипса, решив уравнения, и по этим параметрам оценить симметрию. Но когда мы решим уравнения - центр у нас уже будет. "На сдачу".
Кстати, а оси эллипса произвольно наклонены или параллельны координатным? Тогда у нас вообще 4 уравнения...