2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Сумма квадратов, равная факториалу
Сообщение29.05.2019, 18:04 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
Смотрите. Все простые не нашли, а вот более 50% есть:

https://www.primepuzzles.net/problems/prob_048.htm

Так же есть квадраты с повторными простыми:

https://www.primepuzzles.net/coll20th/coll20th-006.htm

 Профиль  
                  
 
 Re: Сумма квадратов, равная факториалу
Сообщение02.06.2019, 00:21 
Заслуженный участник


20/08/14
12194
Россия, Москва
Вчера за три часа нашлись решения для девятой степени:

(Длинные строки)

Код:
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+419^9+409^9+401^9+389^9+379^9+367^9+359^9+349^9+317^9+311^9+293^9+283^9+271^9+257^9+233^9+227^9+199^9+197^9+193^9+191^9+179^9+167^9+163^9+157^9+109^9+107^9+101^9+97^9+83^9+79^9+67^9+37^9+31^9+19^9+13^9+7^9+5^9+3^9+2^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+419^9+409^9+397^9+389^9+383^9+367^9+359^9+349^9+331^9+307^9+293^9+277^9+269^9+241^9+233^9+227^9+199^9+197^9+191^9+179^9+149^9+139^9+137^9+127^9+107^9+97^9+83^9+79^9+73^9+71^9+67^9+61^9+53^9+47^9+41^9+37^9+31^9+19^9+13^9+11^9+7^9+3^9+2^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+419^9+409^9+397^9+379^9+373^9+367^9+353^9+349^9+347^9+313^9+311^9+307^9+281^9+277^9+271^9+269^9+263^9+251^9+239^9+229^9+227^9+211^9+193^9+191^9+179^9+167^9+163^9+151^9+139^9+137^9+127^9+113^9+109^9+107^9+103^9+89^9+83^9+79^9+71^9+67^9+61^9+53^9+41^9+37^9+31^9+29^9+23^9+17^9+11^9+7^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+419^9+401^9+397^9+383^9+379^9+373^9+367^9+359^9+347^9+311^9+293^9+277^9+271^9+257^9+233^9+223^9+211^9+199^9+197^9+193^9+179^9+173^9+167^9+163^9+151^9+137^9+127^9+113^9+109^9+103^9+89^9+83^9+79^9+61^9+43^9+41^9+37^9+17^9+11^9+7^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+419^9+401^9+397^9+383^9+379^9+367^9+353^9+347^9+337^9+331^9+317^9+311^9+307^9+283^9+281^9+263^9+251^9+233^9+223^9+199^9+193^9+191^9+181^9+173^9+167^9+163^9+157^9+149^9+139^9+137^9+109^9+107^9+103^9+101^9+79^9+61^9+59^9+47^9+43^9+41^9+37^9+31^9+29^9+19^9+7^9+3^9+2^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+409^9+401^9+397^9+389^9+383^9+373^9+359^9+353^9+337^9+317^9+313^9+311^9+307^9+293^9+277^9+271^9+257^9+241^9+239^9+229^9+197^9+193^9+181^9+179^9+163^9+157^9+151^9+131^9+113^9+103^9+101^9+97^9+89^9+83^9+79^9+73^9+67^9+61^9+53^9+47^9+37^9+29^9+23^9+19^9+11^9+7^9+5^9+3^9+2^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+409^9+401^9+397^9+389^9+383^9+373^9+359^9+349^9+347^9+337^9+331^9+293^9+281^9+269^9+263^9+239^9+229^9+223^9+193^9+191^9+173^9+167^9+163^9+151^9+139^9+131^9+127^9+103^9+89^9+79^9+67^9+61^9+53^9+47^9+43^9+37^9+31^9+23^9+17^9+11^9+7^9+5^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+409^9+401^9+397^9+383^9+379^9+373^9+367^9+359^9+353^9+331^9+313^9+311^9+293^9+263^9+257^9+239^9+233^9+211^9+197^9+191^9+181^9+167^9+163^9+149^9+139^9+131^9+127^9+109^9+97^9+79^9+73^9+67^9+59^9+41^9+37^9+31^9+29^9+23^9+11^9+7^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+421^9+409^9+397^9+389^9+379^9+373^9+367^9+359^9+353^9+349^9+347^9+337^9+331^9+317^9+313^9+307^9+281^9+277^9+271^9+257^9+233^9+229^9+227^9+193^9+191^9+181^9+167^9+157^9+151^9+137^9+127^9+113^9+107^9+101^9+97^9+89^9+83^9+79^9+71^9+53^9+47^9+43^9+37^9+29^9+23^9+17^9+13^9+7^9+5^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+431^9+419^9+409^9+397^9+389^9+383^9+379^9+373^9+367^9+359^9+353^9+347^9+337^9+313^9+307^9+283^9+271^9+269^9+239^9+233^9+227^9+223^9+211^9+197^9+191^9+181^9+179^9+167^9+163^9+157^9+151^9+109^9+107^9+101^9+89^9+83^9+67^9+53^9+47^9+43^9+37^9+31^9+29^9+19^9+17^9+13^9+7^9+3^9+2^9
25!=499^9+491^9+487^9+479^9+467^9+463^9+461^9+457^9+449^9+443^9+439^9+433^9+421^9+419^9+409^9+401^9+397^9+389^9+383^9+379^9+373^9+367^9+349^9+347^9+317^9+281^9+277^9+271^9+269^9+257^9+241^9+239^9+229^9+211^9+199^9+193^9+191^9+181^9+179^9+173^9+163^9+157^9+151^9+149^9+137^9+131^9+127^9+101^9+97^9+89^9+73^9+71^9+67^9+61^9+59^9+53^9+47^9+43^9+41^9+31^9+29^9+23^9+17^9+13^9
Восьмая степень застыла на проверке комбинации $23! = 487^8+...$, уже более 80ч ищет ...
Проверка 10-й степени дошла до 27!, 11-й до 29!, 12-й до 31!, 13-й до 33!, 14-ю и следующие проверил до 34!, но решить не могу так как суммы степеней превысили $2^{128}$ (ограничение программы).

 Профиль  
                  
 
 Re: Сумма квадратов, равная факториалу
Сообщение23.06.2019, 11:45 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
Dmitriy40 в сообщении #1397216 писал(а):
Вчера за три часа нашлись решения для девятой степени

Oтличная работа!

Кстати доказано что для 8ой степени решение больше 23.

 Профиль  
                  
 
 Re: Сумма квадратов, равная факториалу
Сообщение23.06.2019, 12:40 
Заслуженный участник


20/08/14
12194
Россия, Москва
dimkadimon в сообщении #1400942 писал(а):
Кстати доказано что для 8ой степени решение больше 23.
Вот как? Значит у вас считается сильно быстрее чем у меня? А то у меня $23! = 487^8+...$ проверялось больше недели, и уже больше двух недель проверяется $23! = 491^8+...$, а впереди и ещё 21 простое до $631$, это чувствую задача на пару лет ...

-- 23.06.2019, 13:34 --

Для $24!$ за два часа счёта нашлись решения:

(Длинные строки!)

Код:
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+367^8+349^8+337^8+331^8+311^8+293^8+281^8+277^8+271^8+269^8+263^8+251^8+241^8+233^8+229^8+223^8+211^8+197^8+193^8+191^8+181^8+173^8+167^8+157^8+151^8+149^8+139^8+137^8+127^8+113^8+103^8+101^8+97^8+83^8+71^8+67^8+61^8+53^8+47^8+43^8+37^8+29^8+23^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+367^8+349^8+337^8+317^8+311^8+307^8+283^8+281^8+271^8+269^8+263^8+251^8+241^8+239^8+233^8+229^8+223^8+211^8+199^8+197^8+193^8+179^8+173^8+163^8+157^8+151^8+149^8+139^8+137^8+113^8+101^8+89^8+83^8+79^8+71^8+67^8+61^8+53^8+43^8+31^8+29^8+19^8+13^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+367^8+347^8+337^8+317^8+313^8+311^8+293^8+281^8+271^8+269^8+263^8+257^8+241^8+227^8+223^8+211^8+199^8+197^8+191^8+181^8+179^8+167^8+157^8+151^8+137^8+131^8+127^8+103^8+101^8+97^8+89^8+83^8+79^8+71^8+61^8+59^8+53^8+47^8+43^8+37^8+29^8+23^8+19^8+13^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+359^8+347^8+337^8+331^8+313^8+311^8+293^8+281^8+277^8+271^8+269^8+251^8+239^8+233^8+229^8+211^8+199^8+193^8+191^8+181^8+179^8+173^8+167^8+151^8+149^8+131^8+127^8+109^8+107^8+103^8+101^8+89^8+83^8+79^8+73^8+67^8+61^8+59^8+53^8+47^8+41^8+37^8+13^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+359^8+347^8+331^8+317^8+313^8+311^8+307^8+293^8+281^8+271^8+269^8+263^8+241^8+239^8+233^8+229^8+223^8+199^8+197^8+193^8+179^8+167^8+163^8+157^8+151^8+139^8+137^8+131^8+127^8+113^8+109^8+103^8+101^8+89^8+79^8+73^8+71^8+67^8+61^8+47^8+31^8+23^8+19^8+13^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+353^8+349^8+347^8+331^8+313^8+307^8+293^8+283^8+281^8+271^8+263^8+251^8+239^8+229^8+227^8+181^8+173^8+167^8+163^8+151^8+139^8+137^8+131^8+127^8+107^8+103^8+97^8+89^8+83^8+79^8+73^8+71^8+67^8+61^8+53^8+43^8+41^8+37^8+31^8+29^8+23^8+19^8+13^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+353^8+349^8+347^8+331^8+311^8+307^8+293^8+283^8+281^8+269^8+263^8+241^8+239^8+229^8+227^8+211^8+197^8+193^8+191^8+181^8+179^8+173^8+163^8+157^8+151^8+149^8+127^8+113^8+109^8+107^8+103^8+101^8+89^8+83^8+79^8+73^8+61^8+59^8+31^8+29^8+23^8+19^8+13^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+373^8+353^8+349^8+337^8+331^8+311^8+307^8+293^8+283^8+281^8+277^8+271^8+263^8+257^8+241^8+233^8+229^8+211^8+199^8+191^8+179^8+173^8+167^8+163^8+151^8+149^8+139^8+131^8+109^8+107^8+103^8+101^8+97^8+89^8+83^8+79^8+71^8+61^8+53^8+47^8+43^8+37^8+29^8+13^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+367^8+353^8+349^8+347^8+331^8+317^8+311^8+293^8+281^8+277^8+271^8+263^8+257^8+251^8+239^8+233^8+227^8+223^8+199^8+197^8+193^8+191^8+181^8+167^8+157^8+149^8+139^8+137^8+113^8+107^8+103^8+101^8+89^8+83^8+79^8+71^8+67^8+61^8+59^8+37^8+29^8+23^8+19^8+13^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+379^8+367^8+353^8+347^8+337^8+331^8+317^8+311^8+307^8+293^8+283^8+281^8+269^8+263^8+251^8+233^8+229^8+227^8+211^8+191^8+181^8+179^8+167^8+151^8+149^8+137^8+131^8+127^8+113^8+109^8+107^8+101^8+89^8+83^8+71^8+67^8+61^8+53^8+47^8+43^8+41^8+29^8+23^8+19^8+13^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+373^8+367^8+349^8+347^8+337^8+331^8+313^8+311^8+307^8+293^8+283^8+281^8+277^8+271^8+269^8+263^8+257^8+251^8+241^8+229^8+211^8+199^8+197^8+193^8+181^8+157^8+151^8+139^8+137^8+131^8+127^8+107^8+103^8+101^8+89^8+83^8+71^8+67^8+53^8+47^8+41^8+37^8+31^8+23^8+19^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+373^8+359^8+353^8+349^8+337^8+331^8+317^8+313^8+311^8+307^8+293^8+283^8+277^8+271^8+269^8+239^8+233^8+229^8+227^8+223^8+211^8+181^8+179^8+167^8+163^8+157^8+151^8+149^8+139^8+137^8+131^8+127^8+113^8+103^8+101^8+89^8+83^8+79^8+73^8+71^8+61^8+53^8+29^8+23^8+13^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+367^8+359^8+353^8+349^8+347^8+337^8+331^8+317^8+311^8+293^8+283^8+277^8+269^8+263^8+251^8+241^8+239^8+227^8+223^8+211^8+199^8+191^8+181^8+163^8+149^8+137^8+127^8+113^8+109^8+107^8+101^8+89^8+83^8+71^8+67^8+59^8+53^8+47^8+43^8+41^8+37^8+31^8+23^8+19^8+13^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+367^8+359^8+353^8+349^8+347^8+337^8+331^8+313^8+311^8+293^8+281^8+277^8+271^8+263^8+257^8+241^8+239^8+233^8+229^8+223^8+193^8+191^8+181^8+179^8+173^8+167^8+163^8+149^8+131^8+127^8+113^8+109^8+107^8+103^8+97^8+89^8+83^8+59^8+53^8+47^8+43^8+41^8+37^8+29^8+23^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+367^8+359^8+353^8+349^8+347^8+337^8+331^8+313^8+307^8+293^8+283^8+281^8+277^8+269^8+257^8+241^8+233^8+229^8+223^8+199^8+197^8+193^8+181^8+179^8+173^8+157^8+151^8+149^8+139^8+137^8+127^8+113^8+109^8+107^8+103^8+101^8+97^8+79^8+73^8+67^8+59^8+53^8+47^8+23^8+19^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+383^8+367^8+359^8+353^8+349^8+347^8+337^8+317^8+311^8+307^8+293^8+283^8+281^8+277^8+271^8+269^8+263^8+257^8+239^8+233^8+229^8+227^8+193^8+181^8+179^8+157^8+151^8+149^8+139^8+137^8+131^8+127^8+113^8+107^8+103^8+101^8+97^8+89^8+79^8+67^8+61^8+59^8+43^8+41^8+37^8+29^8+11^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+379^8+373^8+367^8+359^8+353^8+347^8+331^8+317^8+311^8+293^8+283^8+281^8+277^8+271^8+263^8+257^8+251^8+239^8+233^8+227^8+193^8+191^8+181^8+179^8+173^8+167^8+163^8+157^8+151^8+137^8+109^8+101^8+97^8+89^8+79^8+67^8+61^8+53^8+47^8+43^8+41^8+31^8+29^8+19^8+13^8+11^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+379^8+373^8+359^8+353^8+349^8+337^8+331^8+317^8+313^8+311^8+307^8+283^8+281^8+277^8+271^8+269^8+263^8+257^8+251^8+239^8+229^8+227^8+223^8+211^8+199^8+197^8+191^8+173^8+167^8+149^8+137^8+131^8+113^8+103^8+101^8+97^8+89^8+79^8+73^8+61^8+59^8+53^8+47^8+37^8+31^8+19^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+389^8+373^8+367^8+359^8+353^8+349^8+347^8+337^8+331^8+317^8+313^8+311^8+307^8+283^8+271^8+263^8+257^8+251^8+233^8+227^8+223^8+211^8+193^8+181^8+167^8+163^8+157^8+151^8+139^8+137^8+131^8+127^8+109^8+107^8+103^8+101^8+89^8+83^8+73^8+61^8+59^8+53^8+47^8+41^8+29^8+19^8+13^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+383^8+379^8+373^8+367^8+359^8+353^8+347^8+331^8+317^8+313^8+307^8+283^8+281^8+277^8+271^8+263^8+257^8+251^8+241^8+239^8+233^8+229^8+227^8+223^8+211^8+199^8+197^8+193^8+191^8+181^8+179^8+167^8+151^8+137^8+127^8+107^8+103^8+101^8+97^8+73^8+67^8+53^8+47^8+37^8+29^8+23^8+13^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+397^8+383^8+379^8+373^8+367^8+353^8+349^8+347^8+337^8+317^8+313^8+311^8+307^8+293^8+283^8+277^8+263^8+251^8+241^8+233^8+227^8+223^8+211^8+199^8+191^8+181^8+179^8+167^8+163^8+157^8+151^8+149^8+131^8+127^8+113^8+107^8+103^8+101^8+97^8+89^8+83^8+73^8+67^8+59^8+53^8+47^8+43^8+41^8+13^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+401^8+389^8+383^8+379^8+373^8+367^8+359^8+349^8+347^8+337^8+331^8+317^8+311^8+307^8+293^8+281^8+277^8+269^8+251^8+241^8+239^8+229^8+223^8+211^8+199^8+197^8+193^8+191^8+173^8+151^8+149^8+137^8+113^8+83^8+79^8+73^8+67^8+61^8+59^8+53^8+47^8+43^8+41^8+37^8+31^8+29^8+23^8+19^8+13^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+397^8+389^8+383^8+379^8+373^8+367^8+359^8+353^8+349^8+347^8+317^8+313^8+311^8+307^8+293^8+281^8+277^8+271^8+269^8+251^8+241^8+239^8+229^8+227^8+223^8+199^8+193^8+167^8+163^8+151^8+149^8+139^8+137^8+131^8+113^8+109^8+107^8+101^8+89^8+79^8+73^8+71^8+67^8+61^8+59^8+53^8+47^8+43^8+23^8+13^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+397^8+389^8+383^8+379^8+373^8+367^8+359^8+353^8+349^8+337^8+331^8+317^8+313^8+311^8+293^8+283^8+281^8+263^8+257^8+241^8+239^8+229^8+227^8+211^8+199^8+193^8+191^8+181^8+179^8+173^8+167^8+163^8+157^8+149^8+139^8+131^8+109^8+101^8+89^8+83^8+61^8+59^8+53^8+47^8+43^8+41^8+31^8+29^8+19^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+409^8+397^8+389^8+383^8+379^8+373^8+367^8+353^8+349^8+347^8+337^8+331^8+317^8+313^8+311^8+307^8+293^8+283^8+271^8+263^8+257^8+251^8+239^8+229^8+223^8+197^8+193^8+191^8+173^8+167^8+163^8+137^8+131^8+127^8+109^8+107^8+103^8+97^8+79^8+73^8+71^8+67^8+61^8+53^8+47^8+43^8+29^8+19^8+13^8+11^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+401^8+397^8+389^8+383^8+379^8+373^8+367^8+359^8+353^8+349^8+347^8+337^8+331^8+317^8+313^8+293^8+283^8+271^8+263^8+257^8+251^8+239^8+229^8+223^8+211^8+199^8+197^8+191^8+179^8+167^8+163^8+151^8+137^8+131^8+127^8+109^8+103^8+101^8+97^8+83^8+79^8+73^8+71^8+47^8+43^8+41^8+31^8+23^8+19^8+11^8+7^8+5^8
24!=683^8+677^8+673^8+661^8+659^8+653^8+647^8+643^8+641^8+631^8+619^8+617^8+613^8+607^8+601^8+599^8+593^8+587^8+577^8+571^8+569^8+563^8+557^8+547^8+541^8+523^8+521^8+509^8+503^8+499^8+491^8+487^8+479^8+467^8+463^8+461^8+457^8+449^8+443^8+439^8+433^8+431^8+421^8+419^8+401^8+397^8+389^8+383^8+379^8+373^8+367^8+359^8+353^8+349^8+347^8+337^8+331^8+313^8+311^8+293^8+283^8+281^8+271^8+263^8+251^8+229^8+227^8+223^8+211^8+199^8+193^8+181^8+179^8+157^8+149^8+137^8+127^8+113^8+109^8+103^8+97^8+89^8+83^8+79^8+73^8+67^8+59^8+53^8+41^8+31^8+29^8+23^8+19^8+11^8+7^8+5^8
Но в их минимальности совсем не уверен!

 Профиль  
                  
 
 Re: Сумма квадратов, равная факториалу
Сообщение23.07.2019, 15:53 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
Dmitriy40 в сообщении #1400953 писал(а):
Вот как? Значит у вас считается сильно быстрее чем у меня?

Это теоретическое доказательство: https://oeis.org/A308357/a308357.txt

Dmitriy40 в сообщении #1400953 писал(а):
Для $24!$ за два часа счёта нашлись решения:

Отлично! Значит в нашей последовательности мы теперь знаем а(8)=24 и a(9)=25:
https://oeis.org/A308357

Кстати предсказание Jon E. Schoenfield сбылось - в ваших решениях действительно 96 простых!

 Профиль  
                  
 
 Re: Сумма квадратов, равная факториалу
Сообщение06.08.2019, 08:30 


21/05/16
4292
Аделаида
Кстати, а может еще сделать последовательность количеств простых чисел в этих представлениях?

 Профиль  
                  
 
 Re: Сумма квадратов, равная факториалу
Сообщение07.08.2019, 14:05 
Заслуженный участник


20/08/14
12194
Россия, Москва
А смысл в ней? Да и данных недостаточно, известны (мне) лишь для a(2..5,7), ни a(6), ни a(8), ни a(9) и далее не известны (64 и 96 и 38 соответственно для них пока не доказаны). Ну если хотите, то приведу известные решения (a(2..6,8) были выложены выше в теме, повторю для единообразия):

(Ахтунг! Длинные строки!)

Код:
8!={83,79,73,71,67,61,59,53,43,17,13,3,2}^2
n=13 - с такой длиной 23099 вариантов!

10!={151,47,37,29,19,5}^3
n=6

12!={107,103,97,89,79,71,53,47,43,37,31,29,13,11,5,3}^4
n=16 - с такой длиной 12 вариантов

15!={227,199,179,163,139,127,83,73,71,59,53,43,19,5}^5
15!={241,199,163,139,97,89,61,53,41,37,31,19,17,13}^5
n=14

19!={463,461,457,449,443,439,433,431,421,419,409,401,397,389,383,379,373,367,359,353,349,347,337,331,317,313,311,307,293,283,281,277,271,269,263,257,251,241,239,233,229,211,193,167,157,137,127,113,107,103,101,89,79,73,71,61,53,47,43,37,23,17,7,3}^6
n=64 - с такой длиной не менее 1130000 вариантов! (не доказано)

20!={401,317,293,281,241,229,223,193,139,131,127,109,101,97,61,59,17,5}^7
n=18

24!={683,677,673,661,659,653,647,643,641,631,619,617,613,607,601,599,593,587,577,571,569,563,557,547,541,523,521,509,503,499,491,487,479,467,463,461,457,449,443,439,433,431,421,419,409,401,397,389,383,379,373,367,349,337,331,311,293,281,277,271,269,263,251,241,233,229,223,211,197,193,191,181,173,167,157,151,149,139,137,127,113,103,101,97,83,71,67,61,53,47,43,37,29,23,11,5}^8
n=96 - не менее 27 вариантов (не доказано)

25!={503,499,491,487,479,467,463,461,457,449,439,433,419,409,379,373,359,331,317,311,307,293,277,229,197,193,181,173,167,163,137,131,127,113,109,97,83,17}^9
n=38 - не менее одного варианта (не доказано)

PS. Поучительна история с девятой степенью: выше в теме было выложено решение с 53 числами, потом нашлось решение (уже с другим наибольшим простым числом) с 46 числами, потом с 44, потом с 42, а теперь уже и с 38. И счёт далеко не закончен, может и ещё укоротится. Не менее интересна ситуация с 6-й степенью: ранее были найдены 63 решения с 64 числами с одинаковым наибольшим простым, теперь же за 90ч найдено ещё более миллиона вариантов со следующим простым ровно той длины, 64 числа. И ни одного варианта с другой длиной. Как и для 4-й степени, все варианты одной длины.

 Профиль  
                  
 
 Re: Сумма квадратов, равная факториалу
Сообщение20.09.2019, 22:17 
Заслуженный участник


20/08/14
12194
Россия, Москва
Месяц проверялись варианты $25! =503^9+...$, а спустя две недели проверки вариантов $25! =509^9+...$ нашёлся ещё короче вариант:
Код:
25!={509,503,499,491,487,479,467,463,449,433,431,421,379,373,353,337,281,277,251,239,229,199,181,167,163,157,151,113,109,101,97,89,83,73,29,17}^9
n=36 - не менее одного варианта (не доказано)

(Оффтоп)

Ещё интересный вариант с наибольшим последним числом (простые менее 43 не понадобились):
Код:
25!={503,499,491,487,479,467,463,457,449,443,433,421,419,409,397,383,379,367,353,337,317,313,311,307,293,283,281,277,271,269,257,241,239,211,199,191,179,149,139,137,131,127,109,107,103,89,79,59,53,43}^9,n=50

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 38 ]  На страницу Пред.  1, 2, 3

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group