Если задать в форме Вейерштрасса, обещает двенадцать целочисленных решений
Только кандидат в Госдуму может такое обещать
Код:
GP/PARI CALCULATOR Version 2.12.0 (development 23406-e049edab7)
amd64 running mingw (x86-64/GMP-6.1.2 kernel) 64-bit version
compiled: Jan 15 2019, gcc version 7.3-win32 20180506 (GCC)
threading engine: single
(readline v6.2 enabled, extended help enabled)
Copyright (C) 2000-2018 The PARI Group
PARI/GP is free software, covered by the GNU General Public License, and comes
WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit.
Type ?17 for how to get moral (and possibly technical) support.
? ?ellinit
ellinit(x,{D=1}): let x be a vector [a1,a2,a3,a4,a6], or [a4,a6] if a1=a2=a3=0,
defining the curve Y^2 + a1.XY + a3.Y = X^3 + a2.X^2 + a4.X + a6; x can also be
a string, in which case the curve with matching name is retrieved from the
elldata database, if available. This function initializes an elliptic curve
over the domain D (inferred from coefficients if omitted).
?
? E=ellinit([0,0,1,-1,0])
%1 = [0, 0, 1, -1, 0, 0, -2, 1, -1, 48, -216, 37, 110592/37, Vecsmall([1]), [Vec
small([128, 1])], [0, 0, 0, 0, 0, 0, 0, 0]]
?
? ?ellratpoints
ellratpoints(E,h,{flag=0}): E being an integral model of an elliptic curve,
return a vector containing the affine rational points on the curve of naive
height less than h. If fl=1, stop as soon as a point is found.
?
? ellratpoints(E,10^8)
%2 = [[-1, 0], [-1, -1], [0, 0], [0, -1], [1, 0], [1, -1], [2, 2], [2, -3], [6,
14], [6, -15], [1/4, -3/8], [1/4, -5/8], [-5/9, 8/27], [-5/9, -35/27], [161/16,
2001/64], [161/16, -2065/64], [21/25, -56/125], [21/25, -69/125], [-20/49, 92/34
3], [-20/49, -435/343], [116/529, -3612/12167], [116/529, -8555/12167], [1357/84
1, 28888/24389], [1357/841, -53277/24389], [-3741/3481, -43355/205379], [-3741/3
481, -162024/205379], [480106/4225, 332513754/274625], [480106/4225, -332788379/
274625], [18526/16641, 469430/2146689], [18526/16641, -2616119/2146689], [8385/9
8596, -2882165/30959144], [8385/98596, -28076979/30959144], [-239785/2337841, 33
1948240/3574558889], [-239785/2337841, -3906507129/3574558889], [12551561/136087
21, -8280062505/50202571769], [12551561/13608721, -41922509264/50202571769], [-5
9997896/67387681, 88075171080/553185473329], [-59997896/67387681, -641260644409/
553185473329]]