А функция, удовлетворяющая уравнению Больцмана не удовлетворяет уравнению Лиувилля
Так она и не должна. Там разные величины. В уравнении Больцмана - одночастичная функция распределения. В уравнении Лиувилля - ансамбль, соответствующий одночастичной функции распределения в определённый момент времени, но в следующий момент времени он уже ей не соответствует.
Ансамбль

, соотвествующий в некоторый момент времени одночастичной функции распределения, можно получить из микросостояния применением к последнему некоторого оператора:

Здесь

- микросостояние. Распределение

, будучи (вырожденным) ансамблем, подчиняется уравнению Лиувилля. Если бы оператор

был обратим и коммутировал с оператором Лиувилля

, то мы могли бы написать

и тогда

То есть мы получили, что действительно одночастичная функция распределения удовлетворяет уравнению Лиувилля. Но на самом деле ни одно из двух вышеназванных условий не выполняется. Прежде всего, оператор

необратим: нельзя восстановить микросостояние по макросостоянию. К счастью, приближённо и в специфических условиях его всё-таки можно в некотором смысле обратить - благодаря этому и существует уравнение Больцмана. Но - и вот это главное - он не коммутирует с

(и это опять же можно показать на монетной аналогии, где все эти операторы - просто таблички

).
И вот из-за последнего фактора ансамбль, который в каждый момент времени соответствует одночастичной функции распределения в этот же момент времени, не удовлетворяет уравнению Лиувилля.