Потому, что посылка и заключение ложны. На Марсе никто не прыгал, значит посылка ложна. Заключение очевидно ложно.
Хорошо, пусть посылка и заключение ложны. По определению, импликация в этом случае истинна.
А вот когда они на самом деле ложны, а классическая логика утверждает что истинны, вот это действительно неприемлемо.
Где классическая логика утверждает, что если посылка и заключение ложны, то они истинны?
Слов следует и слов выводится я пока вовсе стараюсь избегать. Т.к. действительно боюсь запутаться в тонкостях их смысла. А вместо них, поэтому, использую непосредственно слово импликация.
Там не тонкости смысла. Различие, на самом деле, очень грубое. Логическая связка "если… то…" принадлежит предметной теории, а понятие выводимости — метатеории. Поэтому формула
является (или не является) теоремой предметной теории, а формула "формула
выводима из формулы
" является (или не является) метатеоремой. Перепутать импликацию и выводимость довольно трудно.
Суть дела тут в следующем. Мы изучаем некоторые "предметы", и с этой целью создаём специальную теорию. Она и называется предметной теорией.
Однако мы можем захотеть изучать эту предметную теорию саму по себе, как самостоятельный "предмет". Вот для этого мы создаём метатеорию, в рамках которой формализуем предметную теорию, и уже в метатеории можем доказывать метатеоремы о том, что можно или нельзя доказать в предметной теории. Теоремы Гёделя — это метатеоремы
В большинстве случаев в роли метатеории выступает естественный язык, но в ряде случаев нам может потребоваться более точная метатеория (формализованная или не формализованная).
Вы лучше объясните почему Someone с Вами не согласен по поводу того, какой логикой пользуются физики.
А с чего Вы взяли, что я не согласен с
arseniiv? Я где-то ему возражал по этому поводу? Я только
спрашивал у Вас, что Вы подразумеваете под "обычной логикой". Выяснилось, что Вы не понимаете, о чём идёт речь.
arseniiv пояснил, что физики пользуются обычной классической аристотелевской логикой. Подавляющее большинство математиков тоже ей пользуются. "Обычной" в том смысле, что не формализованной. Я с ним согласен. (Поясню, что практически все остальные математики, которые не хотят пользоваться классической логикой, используют интуиционистскую логику. Но мотивы у них совершенно не такие, как у Вас.) Формализованная логика нужна только в так называемых "основаниях математики", и то в основном с целью исследования этой логики.
Правильное с точки зрения классической логики.
А с точки зрения физики это утверждение полный бред.
А причём тут физика? Физика занимается вовсе не исследованием классической логики.
Я же Вам писал уже: Вы придумали бредовую интерпретации и эту бредовость приписываете математической логике. Но логику абсолютно не интересует, как Вы интерпретируете высказывания
и
в импликации
.
Но я хочу сказать, что если Вы измените таблицу истинности импликации, то получите кучу проблем.
То, что нам требуется от импликации, записано в виде правила отделения:
То есть, если
истинно и
истинно, то и
должно быть истинным; поэтому в этом случае импликация должна быть истинной при истинном
и ложной при ложном
. Остальные варианты нас не интересуют. Поэтому, доказывая импликацию, мы должны проверить эти два случая. Два других случая (с ложной посылкой) должны давать значение "истина", так как в противном случае у нас окажутся доказуемыми некоторые ложные высказывания, а это совсем нехорошо.
Вы так и не смогли объяснить, что бредового в том, что импликация считается истинной при ложной посылке. Я понял, что Вам это не нравится. Но нравится или не нравится — это ваши личные проблемы. Если Вы хотите, чтобы к Вам относились всерьёз, будьте добры точно сформулировать, что плохое получается из-за такого определения. Не упоминая при этом ни прыжков на Марсе, ни единорогов, ни слова "бред" и его производных. Потому что определение импликации, некоторым образом, используется уже тысячелетия, и пока ничего плохого не произошло.