Yarkin писал(а):
Все должно быть связано с объективным миром - тогда не будет парадоксов.
А математика разве не связана с объективным миром? Даже с учетом высокой степени абстрактности её моделей, отрицать эту связь невозможно.
В работе В.Я. Перминова
«АПРИОРНОСТЬ И РЕАЛЬНАЯ ЗНАЧИМОСТЬ
ИСХОДНЫХ ПРЕДСТАВЛЕНИЙ МАТЕМАТИКИ»
( Биб-ка RIN.RU ) мы читаем:
<< Представление об абстрактной арифметической единице и о совокупности единиц как некоторой мысленной целостности несомненно диктуется представлением об идеальном предмете и совокупностях таких устойчивых и независимых друг от друга предметов.
Но при установлении системы операций, задающих математическую структуру, мы имеем несколько вариантов, которые не противоречат общему предметному видению.
Если мы делаем главным для себя момент пересчета, связанного с перебором такого рода реальных или мысленных совокупностей, то мы отождествляем количество предметов с количеством необходимых операций и полностью отвлекаемся от разделения предметов по совпадению или несовпадению их качеств.
На этом предельно абстрактном уровне понимания единицы мы получаем операцию арифметического сложения и все остальные операции арифметики.
Если же мы делаем значимым для себя разделение предметов на
тождественные и нетождественные, то мы приходим к операции теоретико-множественного объединения, при которой прибавление предметов, тождественных уже содержащимся во множестве, не изменяет этого множества. >>
На стр.5 этого топика мы выяснили, что «парадокс» бесконечных множеств – «часть равна целому» как раз и связан с выбором противоречивых критериев «равенства» множеств, т.е., связан с различием целевых установок.
С содержательной точки зрения бесконечное подмнож-во четных чисел неэквивалентно всему множ-ву, так как элементы этих множеств разные по свойствам.
А вот с точки зрения 1-1 соответствия эти множ-ва эквивалентны, равномощны.
Наша процедура «пересчета» элементов бесконечного множества этот факт «качественной неэквивалентности» множеств не отражает: вместо отсутствующих элементов номера-имена получают «следующие» за ними элементы, которые в силу отсутствия «последнего элемента» всегда находятся.
Cуществование бесконечности в форме П.Б. понимается как возможность бесконечного изменения, выражаемого через наращивание «числа» элементов некоторой совокупности или множества.
Сам способ мыслить о множествах исходит из того, что элементы, из которых собирается множ-во, заранее четко определены и реально существуют ещё до их объединения во множество. В П.Б. имеется неограниченный запас элементов и для каждого из них найдется непосредственно следующий за ним элемент, т. е. «последнего элемента» П.Б. не содержит и никаких «границ» она не имеет.
А.Б. понимается как бесконечная совокупность, построение которой завершено и элементы которой представлены одновременно.
Как видим, абстракция А.Б. подразумевает очень сильную идеализацию: допускается не только возможность неограниченного построения или "обнаружения" последующего элемента (как в П.Б.), но также постулируется, что
все возможные объекты уже построены ( обнаружены) и существуют одновременно.
Мы собираемся показать, что такая точка зрения на А.Б. ошибочна и на самом деле нашему мысленному взору "одновременно" представлены вовсе не "все объекты" бесконечной совокупности, а нечто другое...