Это теорема о представлении скорее. Вот ещё одна: любая конечная группа

является группой симметрий некоторого выпуклого полиэдра в

. Под классификацией хотелось бы понимать некоторый список всех конечных групп, некоторые строчки которого, возможно, параметризуются каким-то параметром, а не просто то, что они реализуются как подгруппы где-то там.
Про конечные поля известно почти всё.
О классификации всех конечных колец неизвестно почти ничего. Даже в коммутативном случае, там, снова же, есть некоторые частичные результаты о их структуре, вроде того, что они раскладываются в прямую сумму локальных, на каждой локальной есть естественная фильтрация по степеням максимального идеала, и понятно как будет устроено градуированное относительно этой фильтрации кольцо.