2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Теорема Лиувилля о сохранении фазового объема
Сообщение18.04.2018, 21:16 
Аватара пользователя


31/08/17
2116
Red_Herring в сообщении #1305192 писал(а):
Прежде всего теорема Лиувилля для физиков: если имеется движение по траекториям дифференциальных уравнений $\frac{d\mathbf{z}}{dt}= \mathbf{v}$, и нет стоков и истоков, то
\begin{align}
\frac{d\rho}{dt}:= \frac{\partial\rho}{\partial t}+\mathbf{v}\cdot\nabla\rho = - \rho \nabla\cdot \mathbf{v}\iff
\tag{1}\\
\frac{\partial\rho}{\partial t}+ \nabla\cdot (\rho\mathbf{v})=0.
\tag{2}
\end{align}


Стоки и истоки по-моему тут ни при чем, при такой постановке вопроса. Задача Коши
$$\rho_t+\frac{\partial (\rho v^i)}{\partial x^i}=0,\quad \rho\mid_{t=0}=\hat \rho(x)$$
имеет решение при любом векторном поле $v=v(x)$
$$\rho(t,x)=\Big|\frac{\partial g^{-t}}{\partial x}(g^{-t}(x))\Big|\hat\rho (g^{-t}(x)).$$
(для простоты я считаю, что $v$ не зависит от $t$)

 Профиль  
                  
 
 Re: Теорема Лиувилля о сохранении фазового объема
Сообщение18.04.2018, 21:17 
Заслуженный участник
Аватара пользователя


30/01/06
72407
amon в сообщении #1305392 писал(а):
траектории будут характеристиками этого уравнения

А, ну да, это я подразумевал. Но с использованием этого - следствие всё же?

 Профиль  
                  
 
 Re: Теорема Лиувилля о сохранении фазового объема
Сообщение18.04.2018, 21:45 
Заслуженный участник
Аватара пользователя


31/01/14
11448
Hogtown
pogulyat_vyshel в сообщении #1305399 писал(а):
Стоки и истоки по-моему тут ни при чем,
Двусмысленность терминологии... Вы понимаете под стоками и истоками особенности поля $\mathbf{v}$, я же нарушение закона сохранения:
$$\frac{d\rho}{dt}+\rho \nabla\cdot \mathbf{v} = f_{source}-f_{sink},$$ где $f_{source}(\mathbf{z},t)$, $f_{sink}(\mathbf{z},t)$ соответствующие плотности: в объеме $dV$ за время $dt$ рождается/исчезает $f_*(\mathbf{z},t)dVdt$ соответствующего "вещества". Например, в результате химической реакции соответствующеее химическое соединение рождается/исчезает, или тепловая энергия, или количество нейтронов в реакторе (какие-то рождаются при делении какие-то поглощаются).

(коварство «вставки»)

Да, кстати, на форуме "вставку" математических выражений (в отличие от "цитаты") надо дорабатывать напильником -- таги math /math исчезают.

 Профиль  
                  
 
 Re: Теорема Лиувилля о сохранении фазового объема
Сообщение18.04.2018, 22:00 
Заслуженный участник
Аватара пользователя


04/09/14
5350
ФТИ им. Иоффе СПб
Munin в сообщении #1305400 писал(а):
Но с использованием этого - следствие всё же?
В приведенной здесь "математической" формулировке - следствие, и довольно простое. А у Ландау в первом томе доказательство состоит из двух утверждений
1. Канонические преобразования сохраняют фазовый объем
2. Фазовый поток - каноническое преобразование.
и тут догадаться, что функция распределения на траектории не меняется уже не так просто.

 Профиль  
                  
 
 Re: Теорема Лиувилля о сохранении фазового объема
Сообщение18.04.2018, 22:08 
Заслуженный участник
Аватара пользователя


31/01/14
11448
Hogtown
amon в сообщении #1305392 писал(а):
Уравнение Больцмана отличается от уравнения Лиувилля тем, что в правую часть добавлен член (интеграл столкновений), который равен нулю на равновесных функциях распределения

Ну это и пример к источникам и стокам: https://en.wikipedia.org/wiki/Boltzmann_equation $z=(\mathbf{x},\mathbf{p})$ и $\mathbf{v}=(\mathbf{p},0)$ (так что дивергенция равна $0$), но происходят мгновенные столкновения с перераспределением моментов молекул, находящихся в одном и том же месте $\mathbf{x}$.

Математическую теорию таких уравнений начал изучать Торстен Карлеман, такие уравнения появляются при изучении разреженного газа (как объяснял 45 лет назад в своем спецкурсе С.К.Годунов, это важно при расчете боеголовок, в верхних слоях атмосферы), ну и существуют ряд математических работ о том, как при немалых (пространственных, по $\mathbf{x}$) плотностях газа (и малых длинах пробега) законен предельный переход от Б. к газодинамике.

 Профиль  
                  
 
 Re: Теорема Лиувилля о сохранении фазового объема
Сообщение19.04.2018, 21:44 
Модератор
Аватара пользователя


30/09/17
1237
 i  Обсуждение свойств уравнения Больцмана выделено в тему «Уравнение Больцмана и его свойства».

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 21 ]  На страницу Пред.  1, 2

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: drzewo


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group